|
import argparse
|
|
from .constants import *
|
|
import re
|
|
from .modules.models import HUNYUAN_VIDEO_CONFIG
|
|
|
|
|
|
def parse_args(namespace=None):
|
|
parser = argparse.ArgumentParser(description="HunyuanVideo inference script")
|
|
|
|
parser = add_network_args(parser)
|
|
parser = add_extra_models_args(parser)
|
|
parser = add_denoise_schedule_args(parser)
|
|
parser = add_inference_args(parser)
|
|
parser = add_parallel_args(parser)
|
|
|
|
args = parser.parse_args(namespace=namespace)
|
|
args = sanity_check_args(args)
|
|
|
|
return args
|
|
|
|
|
|
def add_network_args(parser: argparse.ArgumentParser):
|
|
group = parser.add_argument_group(title="HunyuanVideo network args")
|
|
|
|
|
|
group.add_argument(
|
|
"--model",
|
|
type=str,
|
|
choices=list(HUNYUAN_VIDEO_CONFIG.keys()),
|
|
default="HYVideo-T/2-cfgdistill",
|
|
)
|
|
group.add_argument(
|
|
"--latent-channels",
|
|
type=str,
|
|
default=16,
|
|
help="Number of latent channels of DiT. If None, it will be determined by `vae`. If provided, "
|
|
"it still needs to match the latent channels of the VAE model.",
|
|
)
|
|
group.add_argument(
|
|
"--precision",
|
|
type=str,
|
|
default="bf16",
|
|
choices=PRECISIONS,
|
|
help="Precision mode. Options: fp32, fp16, bf16. Applied to the backbone model and optimizer.",
|
|
)
|
|
|
|
|
|
group.add_argument(
|
|
"--rope-theta", type=int, default=256, help="Theta used in RoPE."
|
|
)
|
|
return parser
|
|
|
|
|
|
def add_extra_models_args(parser: argparse.ArgumentParser):
|
|
group = parser.add_argument_group(
|
|
title="Extra models args, including vae, text encoders and tokenizers)"
|
|
)
|
|
|
|
|
|
group.add_argument(
|
|
"--vae",
|
|
type=str,
|
|
default="884-16c-hy",
|
|
choices=list(VAE_PATH),
|
|
help="Name of the VAE model.",
|
|
)
|
|
group.add_argument(
|
|
"--vae-precision",
|
|
type=str,
|
|
default="fp16",
|
|
choices=PRECISIONS,
|
|
help="Precision mode for the VAE model.",
|
|
)
|
|
group.add_argument(
|
|
"--vae-tiling",
|
|
action="store_true",
|
|
help="Enable tiling for the VAE model to save GPU memory.",
|
|
)
|
|
group.set_defaults(vae_tiling=True)
|
|
|
|
group.add_argument(
|
|
"--text-encoder",
|
|
type=str,
|
|
default="llm",
|
|
choices=list(TEXT_ENCODER_PATH),
|
|
help="Name of the text encoder model.",
|
|
)
|
|
group.add_argument(
|
|
"--text-encoder-precision",
|
|
type=str,
|
|
default="fp16",
|
|
choices=PRECISIONS,
|
|
help="Precision mode for the text encoder model.",
|
|
)
|
|
group.add_argument(
|
|
"--text-states-dim",
|
|
type=int,
|
|
default=4096,
|
|
help="Dimension of the text encoder hidden states.",
|
|
)
|
|
group.add_argument(
|
|
"--text-len", type=int, default=256, help="Maximum length of the text input."
|
|
)
|
|
group.add_argument(
|
|
"--tokenizer",
|
|
type=str,
|
|
default="llm",
|
|
choices=list(TOKENIZER_PATH),
|
|
help="Name of the tokenizer model.",
|
|
)
|
|
group.add_argument(
|
|
"--prompt-template",
|
|
type=str,
|
|
default="dit-llm-encode",
|
|
choices=PROMPT_TEMPLATE,
|
|
help="Image prompt template for the decoder-only text encoder model.",
|
|
)
|
|
group.add_argument(
|
|
"--prompt-template-video",
|
|
type=str,
|
|
default="dit-llm-encode-video",
|
|
choices=PROMPT_TEMPLATE,
|
|
help="Video prompt template for the decoder-only text encoder model.",
|
|
)
|
|
group.add_argument(
|
|
"--hidden-state-skip-layer",
|
|
type=int,
|
|
default=2,
|
|
help="Skip layer for hidden states.",
|
|
)
|
|
group.add_argument(
|
|
"--apply-final-norm",
|
|
action="store_true",
|
|
help="Apply final normalization to the used text encoder hidden states.",
|
|
)
|
|
|
|
|
|
group.add_argument(
|
|
"--text-encoder-2",
|
|
type=str,
|
|
default="clipL",
|
|
choices=list(TEXT_ENCODER_PATH),
|
|
help="Name of the second text encoder model.",
|
|
)
|
|
group.add_argument(
|
|
"--text-encoder-precision-2",
|
|
type=str,
|
|
default="fp16",
|
|
choices=PRECISIONS,
|
|
help="Precision mode for the second text encoder model.",
|
|
)
|
|
group.add_argument(
|
|
"--text-states-dim-2",
|
|
type=int,
|
|
default=768,
|
|
help="Dimension of the second text encoder hidden states.",
|
|
)
|
|
group.add_argument(
|
|
"--tokenizer-2",
|
|
type=str,
|
|
default="clipL",
|
|
choices=list(TOKENIZER_PATH),
|
|
help="Name of the second tokenizer model.",
|
|
)
|
|
group.add_argument(
|
|
"--text-len-2",
|
|
type=int,
|
|
default=77,
|
|
help="Maximum length of the second text input.",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
def add_denoise_schedule_args(parser: argparse.ArgumentParser):
|
|
group = parser.add_argument_group(title="Denoise schedule args")
|
|
|
|
group.add_argument(
|
|
"--denoise-type",
|
|
type=str,
|
|
default="flow",
|
|
help="Denoise type for noised inputs.",
|
|
)
|
|
|
|
|
|
group.add_argument(
|
|
"--flow-shift",
|
|
type=float,
|
|
default=7.0,
|
|
help="Shift factor for flow matching schedulers.",
|
|
)
|
|
group.add_argument(
|
|
"--flow-reverse",
|
|
action="store_true",
|
|
help="If reverse, learning/sampling from t=1 -> t=0.",
|
|
)
|
|
group.add_argument(
|
|
"--flow-solver",
|
|
type=str,
|
|
default="euler",
|
|
help="Solver for flow matching.",
|
|
)
|
|
group.add_argument(
|
|
"--use-linear-quadratic-schedule",
|
|
action="store_true",
|
|
help="Use linear quadratic schedule for flow matching."
|
|
"Following MovieGen (https://ai.meta.com/static-resource/movie-gen-research-paper)",
|
|
)
|
|
group.add_argument(
|
|
"--linear-schedule-end",
|
|
type=int,
|
|
default=25,
|
|
help="End step for linear quadratic schedule for flow matching.",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
def add_inference_args(parser: argparse.ArgumentParser):
|
|
group = parser.add_argument_group(title="Inference args")
|
|
|
|
|
|
group.add_argument(
|
|
"--model-base",
|
|
type=str,
|
|
default="ckpts",
|
|
help="Root path of all the models, including t2v models and extra models.",
|
|
)
|
|
group.add_argument(
|
|
"--dit-weight",
|
|
type=str,
|
|
default="ckpts/hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states.pt",
|
|
help="Path to the HunyuanVideo model. If None, search the model in the args.model_root."
|
|
"1. If it is a file, load the model directly."
|
|
"2. If it is a directory, search the model in the directory. Support two types of models: "
|
|
"1) named `pytorch_model_*.pt`"
|
|
"2) named `*_model_states.pt`, where * can be `mp_rank_00`.",
|
|
)
|
|
group.add_argument(
|
|
"--model-resolution",
|
|
type=str,
|
|
default="540p",
|
|
choices=["540p", "720p"],
|
|
help="Root path of all the models, including t2v models and extra models.",
|
|
)
|
|
group.add_argument(
|
|
"--load-key",
|
|
type=str,
|
|
default="module",
|
|
help="Key to load the model states. 'module' for the main model, 'ema' for the EMA model.",
|
|
)
|
|
group.add_argument(
|
|
"--use-cpu-offload",
|
|
action="store_true",
|
|
help="Use CPU offload for the model load.",
|
|
)
|
|
|
|
|
|
group.add_argument(
|
|
"--batch-size",
|
|
type=int,
|
|
default=1,
|
|
help="Batch size for inference and evaluation.",
|
|
)
|
|
group.add_argument(
|
|
"--infer-steps",
|
|
type=int,
|
|
default=50,
|
|
help="Number of denoising steps for inference.",
|
|
)
|
|
group.add_argument(
|
|
"--disable-autocast",
|
|
action="store_true",
|
|
help="Disable autocast for denoising loop and vae decoding in pipeline sampling.",
|
|
)
|
|
group.add_argument(
|
|
"--save-path",
|
|
type=str,
|
|
default="./results",
|
|
help="Path to save the generated samples.",
|
|
)
|
|
group.add_argument(
|
|
"--save-path-suffix",
|
|
type=str,
|
|
default="",
|
|
help="Suffix for the directory of saved samples.",
|
|
)
|
|
group.add_argument(
|
|
"--name-suffix",
|
|
type=str,
|
|
default="",
|
|
help="Suffix for the names of saved samples.",
|
|
)
|
|
group.add_argument(
|
|
"--num-videos",
|
|
type=int,
|
|
default=1,
|
|
help="Number of videos to generate for each prompt.",
|
|
)
|
|
|
|
group.add_argument(
|
|
"--video-size",
|
|
type=int,
|
|
nargs="+",
|
|
default=(720, 1280),
|
|
help="Video size for training. If a single value is provided, it will be used for both height "
|
|
"and width. If two values are provided, they will be used for height and width "
|
|
"respectively.",
|
|
)
|
|
group.add_argument(
|
|
"--video-length",
|
|
type=int,
|
|
default=129,
|
|
help="How many frames to sample from a video. if using 3d vae, the number should be 4n+1",
|
|
)
|
|
|
|
group.add_argument(
|
|
"--prompt",
|
|
type=str,
|
|
default=None,
|
|
help="Prompt for sampling during evaluation.",
|
|
)
|
|
group.add_argument(
|
|
"--seed-type",
|
|
type=str,
|
|
default="auto",
|
|
choices=["file", "random", "fixed", "auto"],
|
|
help="Seed type for evaluation. If file, use the seed from the CSV file. If random, generate a "
|
|
"random seed. If fixed, use the fixed seed given by `--seed`. If auto, `csv` will use the "
|
|
"seed column if available, otherwise use the fixed `seed` value. `prompt` will use the "
|
|
"fixed `seed` value.",
|
|
)
|
|
group.add_argument("--seed", type=int, default=None, help="Seed for evaluation.")
|
|
|
|
|
|
group.add_argument(
|
|
"--neg-prompt", type=str, default=None, help="Negative prompt for sampling."
|
|
)
|
|
group.add_argument(
|
|
"--cfg-scale", type=float, default=1.0, help="Classifier free guidance scale."
|
|
)
|
|
group.add_argument(
|
|
"--embedded-cfg-scale",
|
|
type=float,
|
|
default=6.0,
|
|
help="Embeded classifier free guidance scale.",
|
|
)
|
|
|
|
group.add_argument(
|
|
"--use-fp8",
|
|
action="store_true",
|
|
help="Enable use fp8 for inference acceleration."
|
|
)
|
|
|
|
group.add_argument(
|
|
"--reproduce",
|
|
action="store_true",
|
|
help="Enable reproducibility by setting random seeds and deterministic algorithms.",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
def add_parallel_args(parser: argparse.ArgumentParser):
|
|
group = parser.add_argument_group(title="Parallel args")
|
|
|
|
|
|
group.add_argument(
|
|
"--ulysses-degree",
|
|
type=int,
|
|
default=1,
|
|
help="Ulysses degree.",
|
|
)
|
|
group.add_argument(
|
|
"--ring-degree",
|
|
type=int,
|
|
default=1,
|
|
help="Ulysses degree.",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
def sanity_check_args(args):
|
|
|
|
vae_pattern = r"\d{2,3}-\d{1,2}c-\w+"
|
|
if not re.match(vae_pattern, args.vae):
|
|
raise ValueError(
|
|
f"Invalid VAE model: {args.vae}. Must be in the format of '{vae_pattern}'."
|
|
)
|
|
vae_channels = int(args.vae.split("-")[1][:-1])
|
|
if args.latent_channels is None:
|
|
args.latent_channels = vae_channels
|
|
if vae_channels != args.latent_channels:
|
|
raise ValueError(
|
|
f"Latent channels ({args.latent_channels}) must match the VAE channels ({vae_channels})."
|
|
)
|
|
return args
|
|
|