Fabrice-TIERCELIN commited on
Commit
5ba7044
·
verified ·
1 Parent(s): 5ee9dd4

Upload 5 files

Browse files
Files changed (4) hide show
  1. hyvideo/config.py +398 -398
  2. hyvideo/constants.py +90 -90
  3. hyvideo/inference.py +671 -671
  4. hyvideo/prompt_rewrite.py +50 -50
hyvideo/config.py CHANGED
@@ -1,398 +1,398 @@
1
- import argparse
2
- from .constants import *
3
- import re
4
- from .modules.models import HUNYUAN_VIDEO_CONFIG
5
-
6
-
7
- def parse_args(namespace=None):
8
- parser = argparse.ArgumentParser(description="HunyuanVideo inference script")
9
-
10
- parser = add_network_args(parser)
11
- parser = add_extra_models_args(parser)
12
- parser = add_denoise_schedule_args(parser)
13
- parser = add_inference_args(parser)
14
- parser = add_parallel_args(parser)
15
-
16
- args = parser.parse_args(namespace=namespace)
17
- args = sanity_check_args(args)
18
-
19
- return args
20
-
21
-
22
- def add_network_args(parser: argparse.ArgumentParser):
23
- group = parser.add_argument_group(title="HunyuanVideo network args")
24
-
25
- # Main model
26
- group.add_argument(
27
- "--model",
28
- type=str,
29
- choices=list(HUNYUAN_VIDEO_CONFIG.keys()),
30
- default="HYVideo-T/2-cfgdistill",
31
- )
32
- group.add_argument(
33
- "--latent-channels",
34
- type=str,
35
- default=16,
36
- help="Number of latent channels of DiT. If None, it will be determined by `vae`. If provided, "
37
- "it still needs to match the latent channels of the VAE model.",
38
- )
39
- group.add_argument(
40
- "--precision",
41
- type=str,
42
- default="bf16",
43
- choices=PRECISIONS,
44
- help="Precision mode. Options: fp32, fp16, bf16. Applied to the backbone model and optimizer.",
45
- )
46
-
47
- # RoPE
48
- group.add_argument(
49
- "--rope-theta", type=int, default=256, help="Theta used in RoPE."
50
- )
51
- return parser
52
-
53
-
54
- def add_extra_models_args(parser: argparse.ArgumentParser):
55
- group = parser.add_argument_group(
56
- title="Extra models args, including vae, text encoders and tokenizers)"
57
- )
58
-
59
- # - VAE
60
- group.add_argument(
61
- "--vae",
62
- type=str,
63
- default="884-16c-hy",
64
- choices=list(VAE_PATH),
65
- help="Name of the VAE model.",
66
- )
67
- group.add_argument(
68
- "--vae-precision",
69
- type=str,
70
- default="fp16",
71
- choices=PRECISIONS,
72
- help="Precision mode for the VAE model.",
73
- )
74
- group.add_argument(
75
- "--vae-tiling",
76
- action="store_true",
77
- help="Enable tiling for the VAE model to save GPU memory.",
78
- )
79
- group.set_defaults(vae_tiling=True)
80
-
81
- group.add_argument(
82
- "--text-encoder",
83
- type=str,
84
- default="llm",
85
- choices=list(TEXT_ENCODER_PATH),
86
- help="Name of the text encoder model.",
87
- )
88
- group.add_argument(
89
- "--text-encoder-precision",
90
- type=str,
91
- default="fp16",
92
- choices=PRECISIONS,
93
- help="Precision mode for the text encoder model.",
94
- )
95
- group.add_argument(
96
- "--text-states-dim",
97
- type=int,
98
- default=4096,
99
- help="Dimension of the text encoder hidden states.",
100
- )
101
- group.add_argument(
102
- "--text-len", type=int, default=256, help="Maximum length of the text input."
103
- )
104
- group.add_argument(
105
- "--tokenizer",
106
- type=str,
107
- default="llm",
108
- choices=list(TOKENIZER_PATH),
109
- help="Name of the tokenizer model.",
110
- )
111
- group.add_argument(
112
- "--prompt-template",
113
- type=str,
114
- default="dit-llm-encode",
115
- choices=PROMPT_TEMPLATE,
116
- help="Image prompt template for the decoder-only text encoder model.",
117
- )
118
- group.add_argument(
119
- "--prompt-template-video",
120
- type=str,
121
- default="dit-llm-encode-video",
122
- choices=PROMPT_TEMPLATE,
123
- help="Video prompt template for the decoder-only text encoder model.",
124
- )
125
- group.add_argument(
126
- "--hidden-state-skip-layer",
127
- type=int,
128
- default=2,
129
- help="Skip layer for hidden states.",
130
- )
131
- group.add_argument(
132
- "--apply-final-norm",
133
- action="store_true",
134
- help="Apply final normalization to the used text encoder hidden states.",
135
- )
136
-
137
- # - CLIP
138
- group.add_argument(
139
- "--text-encoder-2",
140
- type=str,
141
- default="clipL",
142
- choices=list(TEXT_ENCODER_PATH),
143
- help="Name of the second text encoder model.",
144
- )
145
- group.add_argument(
146
- "--text-encoder-precision-2",
147
- type=str,
148
- default="fp16",
149
- choices=PRECISIONS,
150
- help="Precision mode for the second text encoder model.",
151
- )
152
- group.add_argument(
153
- "--text-states-dim-2",
154
- type=int,
155
- default=768,
156
- help="Dimension of the second text encoder hidden states.",
157
- )
158
- group.add_argument(
159
- "--tokenizer-2",
160
- type=str,
161
- default="clipL",
162
- choices=list(TOKENIZER_PATH),
163
- help="Name of the second tokenizer model.",
164
- )
165
- group.add_argument(
166
- "--text-len-2",
167
- type=int,
168
- default=77,
169
- help="Maximum length of the second text input.",
170
- )
171
-
172
- return parser
173
-
174
-
175
- def add_denoise_schedule_args(parser: argparse.ArgumentParser):
176
- group = parser.add_argument_group(title="Denoise schedule args")
177
-
178
- group.add_argument(
179
- "--denoise-type",
180
- type=str,
181
- default="flow",
182
- help="Denoise type for noised inputs.",
183
- )
184
-
185
- # Flow Matching
186
- group.add_argument(
187
- "--flow-shift",
188
- type=float,
189
- default=7.0,
190
- help="Shift factor for flow matching schedulers.",
191
- )
192
- group.add_argument(
193
- "--flow-reverse",
194
- action="store_true",
195
- help="If reverse, learning/sampling from t=1 -> t=0.",
196
- )
197
- group.add_argument(
198
- "--flow-solver",
199
- type=str,
200
- default="euler",
201
- help="Solver for flow matching.",
202
- )
203
- group.add_argument(
204
- "--use-linear-quadratic-schedule",
205
- action="store_true",
206
- help="Use linear quadratic schedule for flow matching."
207
- "Following MovieGen (https://ai.meta.com/static-resource/movie-gen-research-paper)",
208
- )
209
- group.add_argument(
210
- "--linear-schedule-end",
211
- type=int,
212
- default=25,
213
- help="End step for linear quadratic schedule for flow matching.",
214
- )
215
-
216
- return parser
217
-
218
-
219
- def add_inference_args(parser: argparse.ArgumentParser):
220
- group = parser.add_argument_group(title="Inference args")
221
-
222
- # ======================== Model loads ========================
223
- group.add_argument(
224
- "--model-base",
225
- type=str,
226
- default="ckpts",
227
- help="Root path of all the models, including t2v models and extra models.",
228
- )
229
- group.add_argument(
230
- "--dit-weight",
231
- type=str,
232
- default="ckpts/hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states.pt",
233
- help="Path to the HunyuanVideo model. If None, search the model in the args.model_root."
234
- "1. If it is a file, load the model directly."
235
- "2. If it is a directory, search the model in the directory. Support two types of models: "
236
- "1) named `pytorch_model_*.pt`"
237
- "2) named `*_model_states.pt`, where * can be `mp_rank_00`.",
238
- )
239
- group.add_argument(
240
- "--model-resolution",
241
- type=str,
242
- default="540p",
243
- choices=["540p", "720p"],
244
- help="Root path of all the models, including t2v models and extra models.",
245
- )
246
- group.add_argument(
247
- "--load-key",
248
- type=str,
249
- default="module",
250
- help="Key to load the model states. 'module' for the main model, 'ema' for the EMA model.",
251
- )
252
- group.add_argument(
253
- "--use-cpu-offload",
254
- action="store_true",
255
- help="Use CPU offload for the model load.",
256
- )
257
-
258
- # ======================== Inference general setting ========================
259
- group.add_argument(
260
- "--batch-size",
261
- type=int,
262
- default=1,
263
- help="Batch size for inference and evaluation.",
264
- )
265
- group.add_argument(
266
- "--infer-steps",
267
- type=int,
268
- default=50,
269
- help="Number of denoising steps for inference.",
270
- )
271
- group.add_argument(
272
- "--disable-autocast",
273
- action="store_true",
274
- help="Disable autocast for denoising loop and vae decoding in pipeline sampling.",
275
- )
276
- group.add_argument(
277
- "--save-path",
278
- type=str,
279
- default="./results",
280
- help="Path to save the generated samples.",
281
- )
282
- group.add_argument(
283
- "--save-path-suffix",
284
- type=str,
285
- default="",
286
- help="Suffix for the directory of saved samples.",
287
- )
288
- group.add_argument(
289
- "--name-suffix",
290
- type=str,
291
- default="",
292
- help="Suffix for the names of saved samples.",
293
- )
294
- group.add_argument(
295
- "--num-videos",
296
- type=int,
297
- default=1,
298
- help="Number of videos to generate for each prompt.",
299
- )
300
- # ---sample size---
301
- group.add_argument(
302
- "--video-size",
303
- type=int,
304
- nargs="+",
305
- default=(720, 1280),
306
- help="Video size for training. If a single value is provided, it will be used for both height "
307
- "and width. If two values are provided, they will be used for height and width "
308
- "respectively.",
309
- )
310
- group.add_argument(
311
- "--video-length",
312
- type=int,
313
- default=129,
314
- help="How many frames to sample from a video. if using 3d vae, the number should be 4n+1",
315
- )
316
- # --- prompt ---
317
- group.add_argument(
318
- "--prompt",
319
- type=str,
320
- default=None,
321
- help="Prompt for sampling during evaluation.",
322
- )
323
- group.add_argument(
324
- "--seed-type",
325
- type=str,
326
- default="auto",
327
- choices=["file", "random", "fixed", "auto"],
328
- help="Seed type for evaluation. If file, use the seed from the CSV file. If random, generate a "
329
- "random seed. If fixed, use the fixed seed given by `--seed`. If auto, `csv` will use the "
330
- "seed column if available, otherwise use the fixed `seed` value. `prompt` will use the "
331
- "fixed `seed` value.",
332
- )
333
- group.add_argument("--seed", type=int, default=None, help="Seed for evaluation.")
334
-
335
- # Classifier-Free Guidance
336
- group.add_argument(
337
- "--neg-prompt", type=str, default=None, help="Negative prompt for sampling."
338
- )
339
- group.add_argument(
340
- "--cfg-scale", type=float, default=1.0, help="Classifier free guidance scale."
341
- )
342
- group.add_argument(
343
- "--embedded-cfg-scale",
344
- type=float,
345
- default=6.0,
346
- help="Embeded classifier free guidance scale.",
347
- )
348
-
349
- group.add_argument(
350
- "--use-fp8",
351
- action="store_true",
352
- help="Enable use fp8 for inference acceleration."
353
- )
354
-
355
- group.add_argument(
356
- "--reproduce",
357
- action="store_true",
358
- help="Enable reproducibility by setting random seeds and deterministic algorithms.",
359
- )
360
-
361
- return parser
362
-
363
-
364
- def add_parallel_args(parser: argparse.ArgumentParser):
365
- group = parser.add_argument_group(title="Parallel args")
366
-
367
- # ======================== Model loads ========================
368
- group.add_argument(
369
- "--ulysses-degree",
370
- type=int,
371
- default=1,
372
- help="Ulysses degree.",
373
- )
374
- group.add_argument(
375
- "--ring-degree",
376
- type=int,
377
- default=1,
378
- help="Ulysses degree.",
379
- )
380
-
381
- return parser
382
-
383
-
384
- def sanity_check_args(args):
385
- # VAE channels
386
- vae_pattern = r"\d{2,3}-\d{1,2}c-\w+"
387
- if not re.match(vae_pattern, args.vae):
388
- raise ValueError(
389
- f"Invalid VAE model: {args.vae}. Must be in the format of '{vae_pattern}'."
390
- )
391
- vae_channels = int(args.vae.split("-")[1][:-1])
392
- if args.latent_channels is None:
393
- args.latent_channels = vae_channels
394
- if vae_channels != args.latent_channels:
395
- raise ValueError(
396
- f"Latent channels ({args.latent_channels}) must match the VAE channels ({vae_channels})."
397
- )
398
- return args
 
1
+ import argparse
2
+ from .constants import *
3
+ import re
4
+ from .modules.models import HUNYUAN_VIDEO_CONFIG
5
+
6
+
7
+ def parse_args(namespace=None):
8
+ parser = argparse.ArgumentParser(description="HunyuanVideo inference script")
9
+
10
+ parser = add_network_args(parser)
11
+ parser = add_extra_models_args(parser)
12
+ parser = add_denoise_schedule_args(parser)
13
+ parser = add_inference_args(parser)
14
+ parser = add_parallel_args(parser)
15
+
16
+ args = parser.parse_args(namespace=namespace)
17
+ args = sanity_check_args(args)
18
+
19
+ return args
20
+
21
+
22
+ def add_network_args(parser: argparse.ArgumentParser):
23
+ group = parser.add_argument_group(title="HunyuanVideo network args")
24
+
25
+ # Main model
26
+ group.add_argument(
27
+ "--model",
28
+ type=str,
29
+ choices=list(HUNYUAN_VIDEO_CONFIG.keys()),
30
+ default="HYVideo-T/2-cfgdistill",
31
+ )
32
+ group.add_argument(
33
+ "--latent-channels",
34
+ type=str,
35
+ default=16,
36
+ help="Number of latent channels of DiT. If None, it will be determined by `vae`. If provided, "
37
+ "it still needs to match the latent channels of the VAE model.",
38
+ )
39
+ group.add_argument(
40
+ "--precision",
41
+ type=str,
42
+ default="bf16",
43
+ choices=PRECISIONS,
44
+ help="Precision mode. Options: fp32, fp16, bf16. Applied to the backbone model and optimizer.",
45
+ )
46
+
47
+ # RoPE
48
+ group.add_argument(
49
+ "--rope-theta", type=int, default=256, help="Theta used in RoPE."
50
+ )
51
+ return parser
52
+
53
+
54
+ def add_extra_models_args(parser: argparse.ArgumentParser):
55
+ group = parser.add_argument_group(
56
+ title="Extra models args, including vae, text encoders and tokenizers)"
57
+ )
58
+
59
+ # - VAE
60
+ group.add_argument(
61
+ "--vae",
62
+ type=str,
63
+ default="884-16c-hy",
64
+ choices=list(VAE_PATH),
65
+ help="Name of the VAE model.",
66
+ )
67
+ group.add_argument(
68
+ "--vae-precision",
69
+ type=str,
70
+ default="fp16",
71
+ choices=PRECISIONS,
72
+ help="Precision mode for the VAE model.",
73
+ )
74
+ group.add_argument(
75
+ "--vae-tiling",
76
+ action="store_true",
77
+ help="Enable tiling for the VAE model to save GPU memory.",
78
+ )
79
+ group.set_defaults(vae_tiling=True)
80
+
81
+ group.add_argument(
82
+ "--text-encoder",
83
+ type=str,
84
+ default="llm",
85
+ choices=list(TEXT_ENCODER_PATH),
86
+ help="Name of the text encoder model.",
87
+ )
88
+ group.add_argument(
89
+ "--text-encoder-precision",
90
+ type=str,
91
+ default="fp16",
92
+ choices=PRECISIONS,
93
+ help="Precision mode for the text encoder model.",
94
+ )
95
+ group.add_argument(
96
+ "--text-states-dim",
97
+ type=int,
98
+ default=4096,
99
+ help="Dimension of the text encoder hidden states.",
100
+ )
101
+ group.add_argument(
102
+ "--text-len", type=int, default=256, help="Maximum length of the text input."
103
+ )
104
+ group.add_argument(
105
+ "--tokenizer",
106
+ type=str,
107
+ default="llm",
108
+ choices=list(TOKENIZER_PATH),
109
+ help="Name of the tokenizer model.",
110
+ )
111
+ group.add_argument(
112
+ "--prompt-template",
113
+ type=str,
114
+ default="dit-llm-encode",
115
+ choices=PROMPT_TEMPLATE,
116
+ help="Image prompt template for the decoder-only text encoder model.",
117
+ )
118
+ group.add_argument(
119
+ "--prompt-template-video",
120
+ type=str,
121
+ default="dit-llm-encode-video",
122
+ choices=PROMPT_TEMPLATE,
123
+ help="Video prompt template for the decoder-only text encoder model.",
124
+ )
125
+ group.add_argument(
126
+ "--hidden-state-skip-layer",
127
+ type=int,
128
+ default=2,
129
+ help="Skip layer for hidden states.",
130
+ )
131
+ group.add_argument(
132
+ "--apply-final-norm",
133
+ action="store_true",
134
+ help="Apply final normalization to the used text encoder hidden states.",
135
+ )
136
+
137
+ # - CLIP
138
+ group.add_argument(
139
+ "--text-encoder-2",
140
+ type=str,
141
+ default="clipL",
142
+ choices=list(TEXT_ENCODER_PATH),
143
+ help="Name of the second text encoder model.",
144
+ )
145
+ group.add_argument(
146
+ "--text-encoder-precision-2",
147
+ type=str,
148
+ default="fp16",
149
+ choices=PRECISIONS,
150
+ help="Precision mode for the second text encoder model.",
151
+ )
152
+ group.add_argument(
153
+ "--text-states-dim-2",
154
+ type=int,
155
+ default=768,
156
+ help="Dimension of the second text encoder hidden states.",
157
+ )
158
+ group.add_argument(
159
+ "--tokenizer-2",
160
+ type=str,
161
+ default="clipL",
162
+ choices=list(TOKENIZER_PATH),
163
+ help="Name of the second tokenizer model.",
164
+ )
165
+ group.add_argument(
166
+ "--text-len-2",
167
+ type=int,
168
+ default=77,
169
+ help="Maximum length of the second text input.",
170
+ )
171
+
172
+ return parser
173
+
174
+
175
+ def add_denoise_schedule_args(parser: argparse.ArgumentParser):
176
+ group = parser.add_argument_group(title="Denoise schedule args")
177
+
178
+ group.add_argument(
179
+ "--denoise-type",
180
+ type=str,
181
+ default="flow",
182
+ help="Denoise type for noised inputs.",
183
+ )
184
+
185
+ # Flow Matching
186
+ group.add_argument(
187
+ "--flow-shift",
188
+ type=float,
189
+ default=7.0,
190
+ help="Shift factor for flow matching schedulers.",
191
+ )
192
+ group.add_argument(
193
+ "--flow-reverse",
194
+ action="store_true",
195
+ help="If reverse, learning/sampling from t=1 -> t=0.",
196
+ )
197
+ group.add_argument(
198
+ "--flow-solver",
199
+ type=str,
200
+ default="euler",
201
+ help="Solver for flow matching.",
202
+ )
203
+ group.add_argument(
204
+ "--use-linear-quadratic-schedule",
205
+ action="store_true",
206
+ help="Use linear quadratic schedule for flow matching."
207
+ "Following MovieGen (https://ai.meta.com/static-resource/movie-gen-research-paper)",
208
+ )
209
+ group.add_argument(
210
+ "--linear-schedule-end",
211
+ type=int,
212
+ default=25,
213
+ help="End step for linear quadratic schedule for flow matching.",
214
+ )
215
+
216
+ return parser
217
+
218
+
219
+ def add_inference_args(parser: argparse.ArgumentParser):
220
+ group = parser.add_argument_group(title="Inference args")
221
+
222
+ # ======================== Model loads ========================
223
+ group.add_argument(
224
+ "--model-base",
225
+ type=str,
226
+ default="ckpts",
227
+ help="Root path of all the models, including t2v models and extra models.",
228
+ )
229
+ group.add_argument(
230
+ "--dit-weight",
231
+ type=str,
232
+ default="ckpts/hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states.pt",
233
+ help="Path to the HunyuanVideo model. If None, search the model in the args.model_root."
234
+ "1. If it is a file, load the model directly."
235
+ "2. If it is a directory, search the model in the directory. Support two types of models: "
236
+ "1) named `pytorch_model_*.pt`"
237
+ "2) named `*_model_states.pt`, where * can be `mp_rank_00`.",
238
+ )
239
+ group.add_argument(
240
+ "--model-resolution",
241
+ type=str,
242
+ default="540p",
243
+ choices=["540p", "720p"],
244
+ help="Root path of all the models, including t2v models and extra models.",
245
+ )
246
+ group.add_argument(
247
+ "--load-key",
248
+ type=str,
249
+ default="module",
250
+ help="Key to load the model states. 'module' for the main model, 'ema' for the EMA model.",
251
+ )
252
+ group.add_argument(
253
+ "--use-cpu-offload",
254
+ action="store_true",
255
+ help="Use CPU offload for the model load.",
256
+ )
257
+
258
+ # ======================== Inference general setting ========================
259
+ group.add_argument(
260
+ "--batch-size",
261
+ type=int,
262
+ default=1,
263
+ help="Batch size for inference and evaluation.",
264
+ )
265
+ group.add_argument(
266
+ "--infer-steps",
267
+ type=int,
268
+ default=50,
269
+ help="Number of denoising steps for inference.",
270
+ )
271
+ group.add_argument(
272
+ "--disable-autocast",
273
+ action="store_true",
274
+ help="Disable autocast for denoising loop and vae decoding in pipeline sampling.",
275
+ )
276
+ group.add_argument(
277
+ "--save-path",
278
+ type=str,
279
+ default="./results",
280
+ help="Path to save the generated samples.",
281
+ )
282
+ group.add_argument(
283
+ "--save-path-suffix",
284
+ type=str,
285
+ default="",
286
+ help="Suffix for the directory of saved samples.",
287
+ )
288
+ group.add_argument(
289
+ "--name-suffix",
290
+ type=str,
291
+ default="",
292
+ help="Suffix for the names of saved samples.",
293
+ )
294
+ group.add_argument(
295
+ "--num-videos",
296
+ type=int,
297
+ default=1,
298
+ help="Number of videos to generate for each prompt.",
299
+ )
300
+ # ---sample size---
301
+ group.add_argument(
302
+ "--video-size",
303
+ type=int,
304
+ nargs="+",
305
+ default=(720, 1280),
306
+ help="Video size for training. If a single value is provided, it will be used for both height "
307
+ "and width. If two values are provided, they will be used for height and width "
308
+ "respectively.",
309
+ )
310
+ group.add_argument(
311
+ "--video-length",
312
+ type=int,
313
+ default=129,
314
+ help="How many frames to sample from a video. if using 3d vae, the number should be 4n+1",
315
+ )
316
+ # --- prompt ---
317
+ group.add_argument(
318
+ "--prompt",
319
+ type=str,
320
+ default=None,
321
+ help="Prompt for sampling during evaluation.",
322
+ )
323
+ group.add_argument(
324
+ "--seed-type",
325
+ type=str,
326
+ default="auto",
327
+ choices=["file", "random", "fixed", "auto"],
328
+ help="Seed type for evaluation. If file, use the seed from the CSV file. If random, generate a "
329
+ "random seed. If fixed, use the fixed seed given by `--seed`. If auto, `csv` will use the "
330
+ "seed column if available, otherwise use the fixed `seed` value. `prompt` will use the "
331
+ "fixed `seed` value.",
332
+ )
333
+ group.add_argument("--seed", type=int, default=None, help="Seed for evaluation.")
334
+
335
+ # Classifier-Free Guidance
336
+ group.add_argument(
337
+ "--neg-prompt", type=str, default=None, help="Negative prompt for sampling."
338
+ )
339
+ group.add_argument(
340
+ "--cfg-scale", type=float, default=1.0, help="Classifier free guidance scale."
341
+ )
342
+ group.add_argument(
343
+ "--embedded-cfg-scale",
344
+ type=float,
345
+ default=6.0,
346
+ help="Embeded classifier free guidance scale.",
347
+ )
348
+
349
+ group.add_argument(
350
+ "--use-fp8",
351
+ action="store_true",
352
+ help="Enable use fp8 for inference acceleration."
353
+ )
354
+
355
+ group.add_argument(
356
+ "--reproduce",
357
+ action="store_true",
358
+ help="Enable reproducibility by setting random seeds and deterministic algorithms.",
359
+ )
360
+
361
+ return parser
362
+
363
+
364
+ def add_parallel_args(parser: argparse.ArgumentParser):
365
+ group = parser.add_argument_group(title="Parallel args")
366
+
367
+ # ======================== Model loads ========================
368
+ group.add_argument(
369
+ "--ulysses-degree",
370
+ type=int,
371
+ default=1,
372
+ help="Ulysses degree.",
373
+ )
374
+ group.add_argument(
375
+ "--ring-degree",
376
+ type=int,
377
+ default=1,
378
+ help="Ulysses degree.",
379
+ )
380
+
381
+ return parser
382
+
383
+
384
+ def sanity_check_args(args):
385
+ # VAE channels
386
+ vae_pattern = r"\d{2,3}-\d{1,2}c-\w+"
387
+ if not re.match(vae_pattern, args.vae):
388
+ raise ValueError(
389
+ f"Invalid VAE model: {args.vae}. Must be in the format of '{vae_pattern}'."
390
+ )
391
+ vae_channels = int(args.vae.split("-")[1][:-1])
392
+ if args.latent_channels is None:
393
+ args.latent_channels = vae_channels
394
+ if vae_channels != args.latent_channels:
395
+ raise ValueError(
396
+ f"Latent channels ({args.latent_channels}) must match the VAE channels ({vae_channels})."
397
+ )
398
+ return args
hyvideo/constants.py CHANGED
@@ -1,90 +1,90 @@
1
- import os
2
- import torch
3
-
4
- __all__ = [
5
- "C_SCALE",
6
- "PROMPT_TEMPLATE",
7
- "MODEL_BASE",
8
- "PRECISIONS",
9
- "NORMALIZATION_TYPE",
10
- "ACTIVATION_TYPE",
11
- "VAE_PATH",
12
- "TEXT_ENCODER_PATH",
13
- "TOKENIZER_PATH",
14
- "TEXT_PROJECTION",
15
- "DATA_TYPE",
16
- "NEGATIVE_PROMPT",
17
- ]
18
-
19
- PRECISION_TO_TYPE = {
20
- "fp32": torch.float32,
21
- "fp16": torch.float16,
22
- "bf16": torch.bfloat16,
23
- }
24
-
25
- # =================== Constant Values =====================
26
- # Computation scale factor, 1P = 1_000_000_000_000_000. Tensorboard will display the value in PetaFLOPS to avoid
27
- # overflow error when tensorboard logging values.
28
- C_SCALE = 1_000_000_000_000_000
29
-
30
- # When using decoder-only models, we must provide a prompt template to instruct the text encoder
31
- # on how to generate the text.
32
- # --------------------------------------------------------------------
33
- PROMPT_TEMPLATE_ENCODE = (
34
- "<|start_header_id|>system<|end_header_id|>\n\nDescribe the image by detailing the color, shape, size, texture, "
35
- "quantity, text, spatial relationships of the objects and background:<|eot_id|>"
36
- "<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>"
37
- )
38
- PROMPT_TEMPLATE_ENCODE_VIDEO = (
39
- "<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: "
40
- "1. The main content and theme of the video."
41
- "2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects."
42
- "3. Actions, events, behaviors temporal relationships, physical movement changes of the objects."
43
- "4. background environment, light, style and atmosphere."
44
- "5. camera angles, movements, and transitions used in the video:<|eot_id|>"
45
- "<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>"
46
- )
47
-
48
- NEGATIVE_PROMPT = "Aerial view, aerial view, overexposed, low quality, deformation, a poor composition, bad hands, bad teeth, bad eyes, bad limbs, distortion"
49
-
50
- PROMPT_TEMPLATE = {
51
- "dit-llm-encode": {
52
- "template": PROMPT_TEMPLATE_ENCODE,
53
- "crop_start": 36,
54
- },
55
- "dit-llm-encode-video": {
56
- "template": PROMPT_TEMPLATE_ENCODE_VIDEO,
57
- "crop_start": 95,
58
- },
59
- }
60
-
61
- # ======================= Model ======================
62
- PRECISIONS = {"fp32", "fp16", "bf16"}
63
- NORMALIZATION_TYPE = {"layer", "rms"}
64
- ACTIVATION_TYPE = {"relu", "silu", "gelu", "gelu_tanh"}
65
-
66
- # =================== Model Path =====================
67
- MODEL_BASE = os.getenv("MODEL_BASE", "./ckpts")
68
-
69
- # =================== Data =======================
70
- DATA_TYPE = {"image", "video", "image_video"}
71
-
72
- # 3D VAE
73
- VAE_PATH = {"884-16c-hy": f"{MODEL_BASE}/hunyuan-video-t2v-720p/vae"}
74
-
75
- # Text Encoder
76
- TEXT_ENCODER_PATH = {
77
- "clipL": f"{MODEL_BASE}/text_encoder_2",
78
- "llm": f"{MODEL_BASE}/text_encoder",
79
- }
80
-
81
- # Tokenizer
82
- TOKENIZER_PATH = {
83
- "clipL": f"{MODEL_BASE}/text_encoder_2",
84
- "llm": f"{MODEL_BASE}/text_encoder",
85
- }
86
-
87
- TEXT_PROJECTION = {
88
- "linear", # Default, an nn.Linear() layer
89
- "single_refiner", # Single TokenRefiner. Refer to LI-DiT
90
- }
 
1
+ import os
2
+ import torch
3
+
4
+ __all__ = [
5
+ "C_SCALE",
6
+ "PROMPT_TEMPLATE",
7
+ "MODEL_BASE",
8
+ "PRECISIONS",
9
+ "NORMALIZATION_TYPE",
10
+ "ACTIVATION_TYPE",
11
+ "VAE_PATH",
12
+ "TEXT_ENCODER_PATH",
13
+ "TOKENIZER_PATH",
14
+ "TEXT_PROJECTION",
15
+ "DATA_TYPE",
16
+ "NEGATIVE_PROMPT",
17
+ ]
18
+
19
+ PRECISION_TO_TYPE = {
20
+ "fp32": torch.float32,
21
+ "fp16": torch.float16,
22
+ "bf16": torch.bfloat16,
23
+ }
24
+
25
+ # =================== Constant Values =====================
26
+ # Computation scale factor, 1P = 1_000_000_000_000_000. Tensorboard will display the value in PetaFLOPS to avoid
27
+ # overflow error when tensorboard logging values.
28
+ C_SCALE = 1_000_000_000_000_000
29
+
30
+ # When using decoder-only models, we must provide a prompt template to instruct the text encoder
31
+ # on how to generate the text.
32
+ # --------------------------------------------------------------------
33
+ PROMPT_TEMPLATE_ENCODE = (
34
+ "<|start_header_id|>system<|end_header_id|>\n\nDescribe the image by detailing the color, shape, size, texture, "
35
+ "quantity, text, spatial relationships of the objects and background:<|eot_id|>"
36
+ "<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>"
37
+ )
38
+ PROMPT_TEMPLATE_ENCODE_VIDEO = (
39
+ "<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: "
40
+ "1. The main content and theme of the video."
41
+ "2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects."
42
+ "3. Actions, events, behaviors temporal relationships, physical movement changes of the objects."
43
+ "4. background environment, light, style and atmosphere."
44
+ "5. camera angles, movements, and transitions used in the video:<|eot_id|>"
45
+ "<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>"
46
+ )
47
+
48
+ NEGATIVE_PROMPT = "Aerial view, aerial view, overexposed, low quality, deformation, a poor composition, bad hands, bad teeth, bad eyes, bad limbs, distortion"
49
+
50
+ PROMPT_TEMPLATE = {
51
+ "dit-llm-encode": {
52
+ "template": PROMPT_TEMPLATE_ENCODE,
53
+ "crop_start": 36,
54
+ },
55
+ "dit-llm-encode-video": {
56
+ "template": PROMPT_TEMPLATE_ENCODE_VIDEO,
57
+ "crop_start": 95,
58
+ },
59
+ }
60
+
61
+ # ======================= Model ======================
62
+ PRECISIONS = {"fp32", "fp16", "bf16"}
63
+ NORMALIZATION_TYPE = {"layer", "rms"}
64
+ ACTIVATION_TYPE = {"relu", "silu", "gelu", "gelu_tanh"}
65
+
66
+ # =================== Model Path =====================
67
+ MODEL_BASE = os.getenv("MODEL_BASE", "./ckpts")
68
+
69
+ # =================== Data =======================
70
+ DATA_TYPE = {"image", "video", "image_video"}
71
+
72
+ # 3D VAE
73
+ VAE_PATH = {"884-16c-hy": f"{MODEL_BASE}/hunyuan-video-t2v-720p/vae"}
74
+
75
+ # Text Encoder
76
+ TEXT_ENCODER_PATH = {
77
+ "clipL": f"{MODEL_BASE}/text_encoder_2",
78
+ "llm": f"{MODEL_BASE}/text_encoder",
79
+ }
80
+
81
+ # Tokenizer
82
+ TOKENIZER_PATH = {
83
+ "clipL": f"{MODEL_BASE}/text_encoder_2",
84
+ "llm": f"{MODEL_BASE}/text_encoder",
85
+ }
86
+
87
+ TEXT_PROJECTION = {
88
+ "linear", # Default, an nn.Linear() layer
89
+ "single_refiner", # Single TokenRefiner. Refer to LI-DiT
90
+ }
hyvideo/inference.py CHANGED
@@ -1,671 +1,671 @@
1
- import os
2
- import time
3
- import random
4
- import functools
5
- from typing import List, Optional, Tuple, Union
6
-
7
- from pathlib import Path
8
- from loguru import logger
9
-
10
- import torch
11
- import torch.distributed as dist
12
- from hyvideo.constants import PROMPT_TEMPLATE, NEGATIVE_PROMPT, PRECISION_TO_TYPE
13
- from hyvideo.vae import load_vae
14
- from hyvideo.modules import load_model
15
- from hyvideo.text_encoder import TextEncoder
16
- from hyvideo.utils.data_utils import align_to
17
- from hyvideo.modules.posemb_layers import get_nd_rotary_pos_embed
18
- from hyvideo.modules.fp8_optimization import convert_fp8_linear
19
- from hyvideo.diffusion.schedulers import FlowMatchDiscreteScheduler
20
- from hyvideo.diffusion.pipelines import HunyuanVideoPipeline
21
-
22
- try:
23
- import xfuser
24
- from xfuser.core.distributed import (
25
- get_sequence_parallel_world_size,
26
- get_sequence_parallel_rank,
27
- get_sp_group,
28
- initialize_model_parallel,
29
- init_distributed_environment
30
- )
31
- except:
32
- xfuser = None
33
- get_sequence_parallel_world_size = None
34
- get_sequence_parallel_rank = None
35
- get_sp_group = None
36
- initialize_model_parallel = None
37
- init_distributed_environment = None
38
-
39
-
40
- def parallelize_transformer(pipe):
41
- transformer = pipe.transformer
42
- original_forward = transformer.forward
43
-
44
- @functools.wraps(transformer.__class__.forward)
45
- def new_forward(
46
- self,
47
- x: torch.Tensor,
48
- t: torch.Tensor, # Should be in range(0, 1000).
49
- text_states: torch.Tensor = None,
50
- text_mask: torch.Tensor = None, # Now we don't use it.
51
- text_states_2: Optional[torch.Tensor] = None, # Text embedding for modulation.
52
- freqs_cos: Optional[torch.Tensor] = None,
53
- freqs_sin: Optional[torch.Tensor] = None,
54
- guidance: torch.Tensor = None, # Guidance for modulation, should be cfg_scale x 1000.
55
- return_dict: bool = True,
56
- ):
57
- if x.shape[-2] // 2 % get_sequence_parallel_world_size() == 0:
58
- # try to split x by height
59
- split_dim = -2
60
- elif x.shape[-1] // 2 % get_sequence_parallel_world_size() == 0:
61
- # try to split x by width
62
- split_dim = -1
63
- else:
64
- raise ValueError(f"Cannot split video sequence into ulysses_degree x ring_degree ({get_sequence_parallel_world_size()}) parts evenly")
65
-
66
- # patch sizes for the temporal, height, and width dimensions are 1, 2, and 2.
67
- temporal_size, h, w = x.shape[2], x.shape[3] // 2, x.shape[4] // 2
68
-
69
- x = torch.chunk(x, get_sequence_parallel_world_size(),dim=split_dim)[get_sequence_parallel_rank()]
70
-
71
- dim_thw = freqs_cos.shape[-1]
72
- freqs_cos = freqs_cos.reshape(temporal_size, h, w, dim_thw)
73
- freqs_cos = torch.chunk(freqs_cos, get_sequence_parallel_world_size(),dim=split_dim - 1)[get_sequence_parallel_rank()]
74
- freqs_cos = freqs_cos.reshape(-1, dim_thw)
75
- dim_thw = freqs_sin.shape[-1]
76
- freqs_sin = freqs_sin.reshape(temporal_size, h, w, dim_thw)
77
- freqs_sin = torch.chunk(freqs_sin, get_sequence_parallel_world_size(),dim=split_dim - 1)[get_sequence_parallel_rank()]
78
- freqs_sin = freqs_sin.reshape(-1, dim_thw)
79
-
80
- from xfuser.core.long_ctx_attention import xFuserLongContextAttention
81
-
82
- for block in transformer.double_blocks + transformer.single_blocks:
83
- block.hybrid_seq_parallel_attn = xFuserLongContextAttention()
84
-
85
- output = original_forward(
86
- x,
87
- t,
88
- text_states,
89
- text_mask,
90
- text_states_2,
91
- freqs_cos,
92
- freqs_sin,
93
- guidance,
94
- return_dict,
95
- )
96
-
97
- return_dict = not isinstance(output, tuple)
98
- sample = output["x"]
99
- sample = get_sp_group().all_gather(sample, dim=split_dim)
100
- output["x"] = sample
101
- return output
102
-
103
- new_forward = new_forward.__get__(transformer)
104
- transformer.forward = new_forward
105
-
106
-
107
- class Inference(object):
108
- def __init__(
109
- self,
110
- args,
111
- vae,
112
- vae_kwargs,
113
- text_encoder,
114
- model,
115
- text_encoder_2=None,
116
- pipeline=None,
117
- use_cpu_offload=False,
118
- device=None,
119
- logger=None,
120
- parallel_args=None,
121
- ):
122
- self.vae = vae
123
- self.vae_kwargs = vae_kwargs
124
-
125
- self.text_encoder = text_encoder
126
- self.text_encoder_2 = text_encoder_2
127
-
128
- self.model = model
129
- self.pipeline = pipeline
130
- self.use_cpu_offload = use_cpu_offload
131
-
132
- self.args = args
133
- self.device = (
134
- device
135
- if device is not None
136
- else "cuda"
137
- if torch.cuda.is_available()
138
- else "cpu"
139
- )
140
- self.logger = logger
141
- self.parallel_args = parallel_args
142
-
143
- @classmethod
144
- def from_pretrained(cls, pretrained_model_path, args, device=None, **kwargs):
145
- """
146
- Initialize the Inference pipeline.
147
-
148
- Args:
149
- pretrained_model_path (str or pathlib.Path): The model path, including t2v, text encoder and vae checkpoints.
150
- args (argparse.Namespace): The arguments for the pipeline.
151
- device (int): The device for inference. Default is 0.
152
- """
153
- # ========================================================================
154
- logger.info(f"Got text-to-video model root path: {pretrained_model_path}")
155
-
156
- # ==================== Initialize Distributed Environment ================
157
- if args.ulysses_degree > 1 or args.ring_degree > 1:
158
- assert xfuser is not None, \
159
- "Ulysses Attention and Ring Attention requires xfuser package."
160
-
161
- assert args.use_cpu_offload is False, \
162
- "Cannot enable use_cpu_offload in the distributed environment."
163
-
164
- dist.init_process_group("nccl")
165
-
166
- assert dist.get_world_size() == args.ring_degree * args.ulysses_degree, \
167
- "number of GPUs should be equal to ring_degree * ulysses_degree."
168
-
169
- init_distributed_environment(rank=dist.get_rank(), world_size=dist.get_world_size())
170
-
171
- initialize_model_parallel(
172
- sequence_parallel_degree=dist.get_world_size(),
173
- ring_degree=args.ring_degree,
174
- ulysses_degree=args.ulysses_degree,
175
- )
176
- device = torch.device(f"cuda:{os.environ['LOCAL_RANK']}")
177
- else:
178
- if device is None:
179
- device = "cuda" if torch.cuda.is_available() else "cpu"
180
-
181
- parallel_args = {"ulysses_degree": args.ulysses_degree, "ring_degree": args.ring_degree}
182
-
183
- # ======================== Get the args path =============================
184
-
185
- # Disable gradient
186
- torch.set_grad_enabled(False)
187
-
188
- # =========================== Build main model ===========================
189
- logger.info("Building model...")
190
- factor_kwargs = {"device": device, "dtype": PRECISION_TO_TYPE[args.precision]}
191
- in_channels = args.latent_channels
192
- out_channels = args.latent_channels
193
-
194
- model = load_model(
195
- args,
196
- in_channels=in_channels,
197
- out_channels=out_channels,
198
- factor_kwargs=factor_kwargs,
199
- )
200
- if args.use_fp8:
201
- convert_fp8_linear(model, args.dit_weight, original_dtype=PRECISION_TO_TYPE[args.precision])
202
- model = model.to(device)
203
- model = Inference.load_state_dict(args, model, pretrained_model_path)
204
- model.eval()
205
-
206
- # ============================= Build extra models ========================
207
- # VAE
208
- vae, _, s_ratio, t_ratio = load_vae(
209
- args.vae,
210
- args.vae_precision,
211
- logger=logger,
212
- device=device if not args.use_cpu_offload else "cpu",
213
- )
214
- vae_kwargs = {"s_ratio": s_ratio, "t_ratio": t_ratio}
215
-
216
- # Text encoder
217
- if args.prompt_template_video is not None:
218
- crop_start = PROMPT_TEMPLATE[args.prompt_template_video].get(
219
- "crop_start", 0
220
- )
221
- elif args.prompt_template is not None:
222
- crop_start = PROMPT_TEMPLATE[args.prompt_template].get("crop_start", 0)
223
- else:
224
- crop_start = 0
225
- max_length = args.text_len + crop_start
226
-
227
- # prompt_template
228
- prompt_template = (
229
- PROMPT_TEMPLATE[args.prompt_template]
230
- if args.prompt_template is not None
231
- else None
232
- )
233
-
234
- # prompt_template_video
235
- prompt_template_video = (
236
- PROMPT_TEMPLATE[args.prompt_template_video]
237
- if args.prompt_template_video is not None
238
- else None
239
- )
240
-
241
- text_encoder = TextEncoder(
242
- text_encoder_type=args.text_encoder,
243
- max_length=max_length,
244
- text_encoder_precision=args.text_encoder_precision,
245
- tokenizer_type=args.tokenizer,
246
- prompt_template=prompt_template,
247
- prompt_template_video=prompt_template_video,
248
- hidden_state_skip_layer=args.hidden_state_skip_layer,
249
- apply_final_norm=args.apply_final_norm,
250
- reproduce=args.reproduce,
251
- logger=logger,
252
- device=device if not args.use_cpu_offload else "cpu",
253
- )
254
- text_encoder_2 = None
255
- if args.text_encoder_2 is not None:
256
- text_encoder_2 = TextEncoder(
257
- text_encoder_type=args.text_encoder_2,
258
- max_length=args.text_len_2,
259
- text_encoder_precision=args.text_encoder_precision_2,
260
- tokenizer_type=args.tokenizer_2,
261
- reproduce=args.reproduce,
262
- logger=logger,
263
- device=device if not args.use_cpu_offload else "cpu",
264
- )
265
-
266
- return cls(
267
- args=args,
268
- vae=vae,
269
- vae_kwargs=vae_kwargs,
270
- text_encoder=text_encoder,
271
- text_encoder_2=text_encoder_2,
272
- model=model,
273
- use_cpu_offload=args.use_cpu_offload,
274
- device=device,
275
- logger=logger,
276
- parallel_args=parallel_args
277
- )
278
-
279
- @staticmethod
280
- def load_state_dict(args, model, pretrained_model_path):
281
- load_key = args.load_key
282
- dit_weight = Path(args.dit_weight)
283
-
284
- if dit_weight is None:
285
- model_dir = pretrained_model_path / f"t2v_{args.model_resolution}"
286
- files = list(model_dir.glob("*.pt"))
287
- if len(files) == 0:
288
- raise ValueError(f"No model weights found in {model_dir}")
289
- if str(files[0]).startswith("pytorch_model_"):
290
- model_path = dit_weight / f"pytorch_model_{load_key}.pt"
291
- bare_model = True
292
- elif any(str(f).endswith("_model_states.pt") for f in files):
293
- files = [f for f in files if str(f).endswith("_model_states.pt")]
294
- model_path = files[0]
295
- if len(files) > 1:
296
- logger.warning(
297
- f"Multiple model weights found in {dit_weight}, using {model_path}"
298
- )
299
- bare_model = False
300
- else:
301
- raise ValueError(
302
- f"Invalid model path: {dit_weight} with unrecognized weight format: "
303
- f"{list(map(str, files))}. When given a directory as --dit-weight, only "
304
- f"`pytorch_model_*.pt`(provided by HunyuanDiT official) and "
305
- f"`*_model_states.pt`(saved by deepspeed) can be parsed. If you want to load a "
306
- f"specific weight file, please provide the full path to the file."
307
- )
308
- else:
309
- if dit_weight.is_dir():
310
- files = list(dit_weight.glob("*.pt"))
311
- if len(files) == 0:
312
- raise ValueError(f"No model weights found in {dit_weight}")
313
- if str(files[0]).startswith("pytorch_model_"):
314
- model_path = dit_weight / f"pytorch_model_{load_key}.pt"
315
- bare_model = True
316
- elif any(str(f).endswith("_model_states.pt") for f in files):
317
- files = [f for f in files if str(f).endswith("_model_states.pt")]
318
- model_path = files[0]
319
- if len(files) > 1:
320
- logger.warning(
321
- f"Multiple model weights found in {dit_weight}, using {model_path}"
322
- )
323
- bare_model = False
324
- else:
325
- raise ValueError(
326
- f"Invalid model path: {dit_weight} with unrecognized weight format: "
327
- f"{list(map(str, files))}. When given a directory as --dit-weight, only "
328
- f"`pytorch_model_*.pt`(provided by HunyuanDiT official) and "
329
- f"`*_model_states.pt`(saved by deepspeed) can be parsed. If you want to load a "
330
- f"specific weight file, please provide the full path to the file."
331
- )
332
- elif dit_weight.is_file():
333
- model_path = dit_weight
334
- bare_model = "unknown"
335
- else:
336
- raise ValueError(f"Invalid model path: {dit_weight}")
337
-
338
- if not model_path.exists():
339
- raise ValueError(f"model_path not exists: {model_path}")
340
- logger.info(f"Loading torch model {model_path}...")
341
- state_dict = torch.load(model_path, map_location=lambda storage, loc: storage)
342
-
343
- if bare_model == "unknown" and ("ema" in state_dict or "module" in state_dict):
344
- bare_model = False
345
- if bare_model is False:
346
- if load_key in state_dict:
347
- state_dict = state_dict[load_key]
348
- else:
349
- raise KeyError(
350
- f"Missing key: `{load_key}` in the checkpoint: {model_path}. The keys in the checkpoint "
351
- f"are: {list(state_dict.keys())}."
352
- )
353
- model.load_state_dict(state_dict, strict=True)
354
- return model
355
-
356
- @staticmethod
357
- def parse_size(size):
358
- if isinstance(size, int):
359
- size = [size]
360
- if not isinstance(size, (list, tuple)):
361
- raise ValueError(f"Size must be an integer or (height, width), got {size}.")
362
- if len(size) == 1:
363
- size = [size[0], size[0]]
364
- if len(size) != 2:
365
- raise ValueError(f"Size must be an integer or (height, width), got {size}.")
366
- return size
367
-
368
-
369
- class HunyuanVideoSampler(Inference):
370
- def __init__(
371
- self,
372
- args,
373
- vae,
374
- vae_kwargs,
375
- text_encoder,
376
- model,
377
- text_encoder_2=None,
378
- pipeline=None,
379
- use_cpu_offload=False,
380
- device=0,
381
- logger=None,
382
- parallel_args=None
383
- ):
384
- super().__init__(
385
- args,
386
- vae,
387
- vae_kwargs,
388
- text_encoder,
389
- model,
390
- text_encoder_2=text_encoder_2,
391
- pipeline=pipeline,
392
- use_cpu_offload=use_cpu_offload,
393
- device=device,
394
- logger=logger,
395
- parallel_args=parallel_args
396
- )
397
-
398
- self.pipeline = self.load_diffusion_pipeline(
399
- args=args,
400
- vae=self.vae,
401
- text_encoder=self.text_encoder,
402
- text_encoder_2=self.text_encoder_2,
403
- model=self.model,
404
- device=self.device,
405
- )
406
-
407
- self.default_negative_prompt = NEGATIVE_PROMPT
408
- if self.parallel_args['ulysses_degree'] > 1 or self.parallel_args['ring_degree'] > 1:
409
- parallelize_transformer(self.pipeline)
410
-
411
- def load_diffusion_pipeline(
412
- self,
413
- args,
414
- vae,
415
- text_encoder,
416
- text_encoder_2,
417
- model,
418
- scheduler=None,
419
- device=None,
420
- progress_bar_config=None,
421
- data_type="video",
422
- ):
423
- """Load the denoising scheduler for inference."""
424
- if scheduler is None:
425
- if args.denoise_type == "flow":
426
- scheduler = FlowMatchDiscreteScheduler(
427
- shift=args.flow_shift,
428
- reverse=args.flow_reverse,
429
- solver=args.flow_solver,
430
- )
431
- else:
432
- raise ValueError(f"Invalid denoise type {args.denoise_type}")
433
-
434
- pipeline = HunyuanVideoPipeline(
435
- vae=vae,
436
- text_encoder=text_encoder,
437
- text_encoder_2=text_encoder_2,
438
- transformer=model,
439
- scheduler=scheduler,
440
- progress_bar_config=progress_bar_config,
441
- args=args,
442
- )
443
- if self.use_cpu_offload:
444
- pipeline.enable_sequential_cpu_offload()
445
- else:
446
- pipeline = pipeline.to(device)
447
-
448
- return pipeline
449
-
450
- def get_rotary_pos_embed(self, video_length, height, width):
451
- target_ndim = 3
452
- ndim = 5 - 2
453
- # 884
454
- if "884" in self.args.vae:
455
- latents_size = [(video_length - 1) // 4 + 1, height // 8, width // 8]
456
- elif "888" in self.args.vae:
457
- latents_size = [(video_length - 1) // 8 + 1, height // 8, width // 8]
458
- else:
459
- latents_size = [video_length, height // 8, width // 8]
460
-
461
- if isinstance(self.model.patch_size, int):
462
- assert all(s % self.model.patch_size == 0 for s in latents_size), (
463
- f"Latent size(last {ndim} dimensions) should be divisible by patch size({self.model.patch_size}), "
464
- f"but got {latents_size}."
465
- )
466
- rope_sizes = [s // self.model.patch_size for s in latents_size]
467
- elif isinstance(self.model.patch_size, list):
468
- assert all(
469
- s % self.model.patch_size[idx] == 0
470
- for idx, s in enumerate(latents_size)
471
- ), (
472
- f"Latent size(last {ndim} dimensions) should be divisible by patch size({self.model.patch_size}), "
473
- f"but got {latents_size}."
474
- )
475
- rope_sizes = [
476
- s // self.model.patch_size[idx] for idx, s in enumerate(latents_size)
477
- ]
478
-
479
- if len(rope_sizes) != target_ndim:
480
- rope_sizes = [1] * (target_ndim - len(rope_sizes)) + rope_sizes # time axis
481
- head_dim = self.model.hidden_size // self.model.heads_num
482
- rope_dim_list = self.model.rope_dim_list
483
- if rope_dim_list is None:
484
- rope_dim_list = [head_dim // target_ndim for _ in range(target_ndim)]
485
- assert (
486
- sum(rope_dim_list) == head_dim
487
- ), "sum(rope_dim_list) should equal to head_dim of attention layer"
488
- freqs_cos, freqs_sin = get_nd_rotary_pos_embed(
489
- rope_dim_list,
490
- rope_sizes,
491
- theta=self.args.rope_theta,
492
- use_real=True,
493
- theta_rescale_factor=1,
494
- )
495
- return freqs_cos, freqs_sin
496
-
497
- @torch.no_grad()
498
- def predict(
499
- self,
500
- prompt,
501
- height=192,
502
- width=336,
503
- video_length=129,
504
- seed=None,
505
- negative_prompt=None,
506
- infer_steps=50,
507
- guidance_scale=6,
508
- flow_shift=5.0,
509
- embedded_guidance_scale=None,
510
- batch_size=1,
511
- num_videos_per_prompt=1,
512
- **kwargs,
513
- ):
514
- """
515
- Predict the image/video from the given text.
516
-
517
- Args:
518
- prompt (str or List[str]): The input text.
519
- kwargs:
520
- height (int): The height of the output video. Default is 192.
521
- width (int): The width of the output video. Default is 336.
522
- video_length (int): The frame number of the output video. Default is 129.
523
- seed (int or List[str]): The random seed for the generation. Default is a random integer.
524
- negative_prompt (str or List[str]): The negative text prompt. Default is an empty string.
525
- guidance_scale (float): The guidance scale for the generation. Default is 6.0.
526
- num_images_per_prompt (int): The number of images per prompt. Default is 1.
527
- infer_steps (int): The number of inference steps. Default is 100.
528
- """
529
- out_dict = dict()
530
-
531
- # ========================================================================
532
- # Arguments: seed
533
- # ========================================================================
534
- if isinstance(seed, torch.Tensor):
535
- seed = seed.tolist()
536
- if seed is None:
537
- seeds = [
538
- random.randint(0, 1_000_000)
539
- for _ in range(batch_size * num_videos_per_prompt)
540
- ]
541
- elif isinstance(seed, int):
542
- seeds = [
543
- seed + i
544
- for _ in range(batch_size)
545
- for i in range(num_videos_per_prompt)
546
- ]
547
- elif isinstance(seed, (list, tuple)):
548
- if len(seed) == batch_size:
549
- seeds = [
550
- int(seed[i]) + j
551
- for i in range(batch_size)
552
- for j in range(num_videos_per_prompt)
553
- ]
554
- elif len(seed) == batch_size * num_videos_per_prompt:
555
- seeds = [int(s) for s in seed]
556
- else:
557
- raise ValueError(
558
- f"Length of seed must be equal to number of prompt(batch_size) or "
559
- f"batch_size * num_videos_per_prompt ({batch_size} * {num_videos_per_prompt}), got {seed}."
560
- )
561
- else:
562
- raise ValueError(
563
- f"Seed must be an integer, a list of integers, or None, got {seed}."
564
- )
565
- generator = [torch.Generator(self.device).manual_seed(seed) for seed in seeds]
566
- out_dict["seeds"] = seeds
567
-
568
- # ========================================================================
569
- # Arguments: target_width, target_height, target_video_length
570
- # ========================================================================
571
- if width <= 0 or height <= 0 or video_length <= 0:
572
- raise ValueError(
573
- f"`height` and `width` and `video_length` must be positive integers, got height={height}, width={width}, video_length={video_length}"
574
- )
575
- if (video_length - 1) % 4 != 0:
576
- raise ValueError(
577
- f"`video_length-1` must be a multiple of 4, got {video_length}"
578
- )
579
-
580
- logger.info(
581
- f"Input (height, width, video_length) = ({height}, {width}, {video_length})"
582
- )
583
-
584
- target_height = align_to(height, 16)
585
- target_width = align_to(width, 16)
586
- target_video_length = video_length
587
-
588
- out_dict["size"] = (target_height, target_width, target_video_length)
589
-
590
- # ========================================================================
591
- # Arguments: prompt, new_prompt, negative_prompt
592
- # ========================================================================
593
- if not isinstance(prompt, str):
594
- raise TypeError(f"`prompt` must be a string, but got {type(prompt)}")
595
- prompt = [prompt.strip()]
596
-
597
- # negative prompt
598
- if negative_prompt is None or negative_prompt == "":
599
- negative_prompt = self.default_negative_prompt
600
- if not isinstance(negative_prompt, str):
601
- raise TypeError(
602
- f"`negative_prompt` must be a string, but got {type(negative_prompt)}"
603
- )
604
- negative_prompt = [negative_prompt.strip()]
605
-
606
- # ========================================================================
607
- # Scheduler
608
- # ========================================================================
609
- scheduler = FlowMatchDiscreteScheduler(
610
- shift=flow_shift,
611
- reverse=self.args.flow_reverse,
612
- solver=self.args.flow_solver
613
- )
614
- self.pipeline.scheduler = scheduler
615
-
616
- # ========================================================================
617
- # Build Rope freqs
618
- # ========================================================================
619
- freqs_cos, freqs_sin = self.get_rotary_pos_embed(
620
- target_video_length, target_height, target_width
621
- )
622
- n_tokens = freqs_cos.shape[0]
623
-
624
- # ========================================================================
625
- # Print infer args
626
- # ========================================================================
627
- debug_str = f"""
628
- height: {target_height}
629
- width: {target_width}
630
- video_length: {target_video_length}
631
- prompt: {prompt}
632
- neg_prompt: {negative_prompt}
633
- seed: {seed}
634
- infer_steps: {infer_steps}
635
- num_videos_per_prompt: {num_videos_per_prompt}
636
- guidance_scale: {guidance_scale}
637
- n_tokens: {n_tokens}
638
- flow_shift: {flow_shift}
639
- embedded_guidance_scale: {embedded_guidance_scale}"""
640
- logger.debug(debug_str)
641
-
642
- # ========================================================================
643
- # Pipeline inference
644
- # ========================================================================
645
- start_time = time.time()
646
- samples = self.pipeline(
647
- prompt=prompt,
648
- height=target_height,
649
- width=target_width,
650
- video_length=target_video_length,
651
- num_inference_steps=infer_steps,
652
- guidance_scale=guidance_scale,
653
- negative_prompt=negative_prompt,
654
- num_videos_per_prompt=num_videos_per_prompt,
655
- generator=generator,
656
- output_type="pil",
657
- freqs_cis=(freqs_cos, freqs_sin),
658
- n_tokens=n_tokens,
659
- embedded_guidance_scale=embedded_guidance_scale,
660
- data_type="video" if target_video_length > 1 else "image",
661
- is_progress_bar=True,
662
- vae_ver=self.args.vae,
663
- enable_tiling=self.args.vae_tiling,
664
- )[0]
665
- out_dict["samples"] = samples
666
- out_dict["prompts"] = prompt
667
-
668
- gen_time = time.time() - start_time
669
- logger.info(f"Success, time: {gen_time}")
670
-
671
- return out_dict
 
1
+ import os
2
+ import time
3
+ import random
4
+ import functools
5
+ from typing import List, Optional, Tuple, Union
6
+
7
+ from pathlib import Path
8
+ from loguru import logger
9
+
10
+ import torch
11
+ import torch.distributed as dist
12
+ from hyvideo.constants import PROMPT_TEMPLATE, NEGATIVE_PROMPT, PRECISION_TO_TYPE
13
+ from hyvideo.vae import load_vae
14
+ from hyvideo.modules import load_model
15
+ from hyvideo.text_encoder import TextEncoder
16
+ from hyvideo.utils.data_utils import align_to
17
+ from hyvideo.modules.posemb_layers import get_nd_rotary_pos_embed
18
+ from hyvideo.modules.fp8_optimization import convert_fp8_linear
19
+ from hyvideo.diffusion.schedulers import FlowMatchDiscreteScheduler
20
+ from hyvideo.diffusion.pipelines import HunyuanVideoPipeline
21
+
22
+ try:
23
+ import xfuser
24
+ from xfuser.core.distributed import (
25
+ get_sequence_parallel_world_size,
26
+ get_sequence_parallel_rank,
27
+ get_sp_group,
28
+ initialize_model_parallel,
29
+ init_distributed_environment
30
+ )
31
+ except:
32
+ xfuser = None
33
+ get_sequence_parallel_world_size = None
34
+ get_sequence_parallel_rank = None
35
+ get_sp_group = None
36
+ initialize_model_parallel = None
37
+ init_distributed_environment = None
38
+
39
+
40
+ def parallelize_transformer(pipe):
41
+ transformer = pipe.transformer
42
+ original_forward = transformer.forward
43
+
44
+ @functools.wraps(transformer.__class__.forward)
45
+ def new_forward(
46
+ self,
47
+ x: torch.Tensor,
48
+ t: torch.Tensor, # Should be in range(0, 1000).
49
+ text_states: torch.Tensor = None,
50
+ text_mask: torch.Tensor = None, # Now we don't use it.
51
+ text_states_2: Optional[torch.Tensor] = None, # Text embedding for modulation.
52
+ freqs_cos: Optional[torch.Tensor] = None,
53
+ freqs_sin: Optional[torch.Tensor] = None,
54
+ guidance: torch.Tensor = None, # Guidance for modulation, should be cfg_scale x 1000.
55
+ return_dict: bool = True,
56
+ ):
57
+ if x.shape[-2] // 2 % get_sequence_parallel_world_size() == 0:
58
+ # try to split x by height
59
+ split_dim = -2
60
+ elif x.shape[-1] // 2 % get_sequence_parallel_world_size() == 0:
61
+ # try to split x by width
62
+ split_dim = -1
63
+ else:
64
+ raise ValueError(f"Cannot split video sequence into ulysses_degree x ring_degree ({get_sequence_parallel_world_size()}) parts evenly")
65
+
66
+ # patch sizes for the temporal, height, and width dimensions are 1, 2, and 2.
67
+ temporal_size, h, w = x.shape[2], x.shape[3] // 2, x.shape[4] // 2
68
+
69
+ x = torch.chunk(x, get_sequence_parallel_world_size(),dim=split_dim)[get_sequence_parallel_rank()]
70
+
71
+ dim_thw = freqs_cos.shape[-1]
72
+ freqs_cos = freqs_cos.reshape(temporal_size, h, w, dim_thw)
73
+ freqs_cos = torch.chunk(freqs_cos, get_sequence_parallel_world_size(),dim=split_dim - 1)[get_sequence_parallel_rank()]
74
+ freqs_cos = freqs_cos.reshape(-1, dim_thw)
75
+ dim_thw = freqs_sin.shape[-1]
76
+ freqs_sin = freqs_sin.reshape(temporal_size, h, w, dim_thw)
77
+ freqs_sin = torch.chunk(freqs_sin, get_sequence_parallel_world_size(),dim=split_dim - 1)[get_sequence_parallel_rank()]
78
+ freqs_sin = freqs_sin.reshape(-1, dim_thw)
79
+
80
+ from xfuser.core.long_ctx_attention import xFuserLongContextAttention
81
+
82
+ for block in transformer.double_blocks + transformer.single_blocks:
83
+ block.hybrid_seq_parallel_attn = xFuserLongContextAttention()
84
+
85
+ output = original_forward(
86
+ x,
87
+ t,
88
+ text_states,
89
+ text_mask,
90
+ text_states_2,
91
+ freqs_cos,
92
+ freqs_sin,
93
+ guidance,
94
+ return_dict,
95
+ )
96
+
97
+ return_dict = not isinstance(output, tuple)
98
+ sample = output["x"]
99
+ sample = get_sp_group().all_gather(sample, dim=split_dim)
100
+ output["x"] = sample
101
+ return output
102
+
103
+ new_forward = new_forward.__get__(transformer)
104
+ transformer.forward = new_forward
105
+
106
+
107
+ class Inference(object):
108
+ def __init__(
109
+ self,
110
+ args,
111
+ vae,
112
+ vae_kwargs,
113
+ text_encoder,
114
+ model,
115
+ text_encoder_2=None,
116
+ pipeline=None,
117
+ use_cpu_offload=False,
118
+ device=None,
119
+ logger=None,
120
+ parallel_args=None,
121
+ ):
122
+ self.vae = vae
123
+ self.vae_kwargs = vae_kwargs
124
+
125
+ self.text_encoder = text_encoder
126
+ self.text_encoder_2 = text_encoder_2
127
+
128
+ self.model = model
129
+ self.pipeline = pipeline
130
+ self.use_cpu_offload = use_cpu_offload
131
+
132
+ self.args = args
133
+ self.device = (
134
+ device
135
+ if device is not None
136
+ else "cuda"
137
+ if torch.cuda.is_available()
138
+ else "cpu"
139
+ )
140
+ self.logger = logger
141
+ self.parallel_args = parallel_args
142
+
143
+ @classmethod
144
+ def from_pretrained(cls, pretrained_model_path, args, device=None, **kwargs):
145
+ """
146
+ Initialize the Inference pipeline.
147
+
148
+ Args:
149
+ pretrained_model_path (str or pathlib.Path): The model path, including t2v, text encoder and vae checkpoints.
150
+ args (argparse.Namespace): The arguments for the pipeline.
151
+ device (int): The device for inference. Default is 0.
152
+ """
153
+ # ========================================================================
154
+ logger.info(f"Got text-to-video model root path: {pretrained_model_path}")
155
+
156
+ # ==================== Initialize Distributed Environment ================
157
+ if args.ulysses_degree > 1 or args.ring_degree > 1:
158
+ assert xfuser is not None, \
159
+ "Ulysses Attention and Ring Attention requires xfuser package."
160
+
161
+ assert args.use_cpu_offload is False, \
162
+ "Cannot enable use_cpu_offload in the distributed environment."
163
+
164
+ dist.init_process_group("nccl")
165
+
166
+ assert dist.get_world_size() == args.ring_degree * args.ulysses_degree, \
167
+ "number of GPUs should be equal to ring_degree * ulysses_degree."
168
+
169
+ init_distributed_environment(rank=dist.get_rank(), world_size=dist.get_world_size())
170
+
171
+ initialize_model_parallel(
172
+ sequence_parallel_degree=dist.get_world_size(),
173
+ ring_degree=args.ring_degree,
174
+ ulysses_degree=args.ulysses_degree,
175
+ )
176
+ device = torch.device(f"cuda:{os.environ['LOCAL_RANK']}")
177
+ else:
178
+ if device is None:
179
+ device = "cuda" if torch.cuda.is_available() else "cpu"
180
+
181
+ parallel_args = {"ulysses_degree": args.ulysses_degree, "ring_degree": args.ring_degree}
182
+
183
+ # ======================== Get the args path =============================
184
+
185
+ # Disable gradient
186
+ torch.set_grad_enabled(False)
187
+
188
+ # =========================== Build main model ===========================
189
+ logger.info("Building model...")
190
+ factor_kwargs = {"device": device, "dtype": PRECISION_TO_TYPE[args.precision]}
191
+ in_channels = args.latent_channels
192
+ out_channels = args.latent_channels
193
+
194
+ model = load_model(
195
+ args,
196
+ in_channels=in_channels,
197
+ out_channels=out_channels,
198
+ factor_kwargs=factor_kwargs,
199
+ )
200
+ if args.use_fp8:
201
+ convert_fp8_linear(model, args.dit_weight, original_dtype=PRECISION_TO_TYPE[args.precision])
202
+ model = model.to(device)
203
+ model = Inference.load_state_dict(args, model, pretrained_model_path)
204
+ model.eval()
205
+
206
+ # ============================= Build extra models ========================
207
+ # VAE
208
+ vae, _, s_ratio, t_ratio = load_vae(
209
+ args.vae,
210
+ args.vae_precision,
211
+ logger=logger,
212
+ device=device if not args.use_cpu_offload else "cpu",
213
+ )
214
+ vae_kwargs = {"s_ratio": s_ratio, "t_ratio": t_ratio}
215
+
216
+ # Text encoder
217
+ if args.prompt_template_video is not None:
218
+ crop_start = PROMPT_TEMPLATE[args.prompt_template_video].get(
219
+ "crop_start", 0
220
+ )
221
+ elif args.prompt_template is not None:
222
+ crop_start = PROMPT_TEMPLATE[args.prompt_template].get("crop_start", 0)
223
+ else:
224
+ crop_start = 0
225
+ max_length = args.text_len + crop_start
226
+
227
+ # prompt_template
228
+ prompt_template = (
229
+ PROMPT_TEMPLATE[args.prompt_template]
230
+ if args.prompt_template is not None
231
+ else None
232
+ )
233
+
234
+ # prompt_template_video
235
+ prompt_template_video = (
236
+ PROMPT_TEMPLATE[args.prompt_template_video]
237
+ if args.prompt_template_video is not None
238
+ else None
239
+ )
240
+
241
+ text_encoder = TextEncoder(
242
+ text_encoder_type=args.text_encoder,
243
+ max_length=max_length,
244
+ text_encoder_precision=args.text_encoder_precision,
245
+ tokenizer_type=args.tokenizer,
246
+ prompt_template=prompt_template,
247
+ prompt_template_video=prompt_template_video,
248
+ hidden_state_skip_layer=args.hidden_state_skip_layer,
249
+ apply_final_norm=args.apply_final_norm,
250
+ reproduce=args.reproduce,
251
+ logger=logger,
252
+ device=device if not args.use_cpu_offload else "cpu",
253
+ )
254
+ text_encoder_2 = None
255
+ if args.text_encoder_2 is not None:
256
+ text_encoder_2 = TextEncoder(
257
+ text_encoder_type=args.text_encoder_2,
258
+ max_length=args.text_len_2,
259
+ text_encoder_precision=args.text_encoder_precision_2,
260
+ tokenizer_type=args.tokenizer_2,
261
+ reproduce=args.reproduce,
262
+ logger=logger,
263
+ device=device if not args.use_cpu_offload else "cpu",
264
+ )
265
+
266
+ return cls(
267
+ args=args,
268
+ vae=vae,
269
+ vae_kwargs=vae_kwargs,
270
+ text_encoder=text_encoder,
271
+ text_encoder_2=text_encoder_2,
272
+ model=model,
273
+ use_cpu_offload=args.use_cpu_offload,
274
+ device=device,
275
+ logger=logger,
276
+ parallel_args=parallel_args
277
+ )
278
+
279
+ @staticmethod
280
+ def load_state_dict(args, model, pretrained_model_path):
281
+ load_key = args.load_key
282
+ dit_weight = Path(args.dit_weight)
283
+
284
+ if dit_weight is None:
285
+ model_dir = pretrained_model_path / f"t2v_{args.model_resolution}"
286
+ files = list(model_dir.glob("*.pt"))
287
+ if len(files) == 0:
288
+ raise ValueError(f"No model weights found in {model_dir}")
289
+ if str(files[0]).startswith("pytorch_model_"):
290
+ model_path = dit_weight / f"pytorch_model_{load_key}.pt"
291
+ bare_model = True
292
+ elif any(str(f).endswith("_model_states.pt") for f in files):
293
+ files = [f for f in files if str(f).endswith("_model_states.pt")]
294
+ model_path = files[0]
295
+ if len(files) > 1:
296
+ logger.warning(
297
+ f"Multiple model weights found in {dit_weight}, using {model_path}"
298
+ )
299
+ bare_model = False
300
+ else:
301
+ raise ValueError(
302
+ f"Invalid model path: {dit_weight} with unrecognized weight format: "
303
+ f"{list(map(str, files))}. When given a directory as --dit-weight, only "
304
+ f"`pytorch_model_*.pt`(provided by HunyuanDiT official) and "
305
+ f"`*_model_states.pt`(saved by deepspeed) can be parsed. If you want to load a "
306
+ f"specific weight file, please provide the full path to the file."
307
+ )
308
+ else:
309
+ if dit_weight.is_dir():
310
+ files = list(dit_weight.glob("*.pt"))
311
+ if len(files) == 0:
312
+ raise ValueError(f"No model weights found in {dit_weight}")
313
+ if str(files[0]).startswith("pytorch_model_"):
314
+ model_path = dit_weight / f"pytorch_model_{load_key}.pt"
315
+ bare_model = True
316
+ elif any(str(f).endswith("_model_states.pt") for f in files):
317
+ files = [f for f in files if str(f).endswith("_model_states.pt")]
318
+ model_path = files[0]
319
+ if len(files) > 1:
320
+ logger.warning(
321
+ f"Multiple model weights found in {dit_weight}, using {model_path}"
322
+ )
323
+ bare_model = False
324
+ else:
325
+ raise ValueError(
326
+ f"Invalid model path: {dit_weight} with unrecognized weight format: "
327
+ f"{list(map(str, files))}. When given a directory as --dit-weight, only "
328
+ f"`pytorch_model_*.pt`(provided by HunyuanDiT official) and "
329
+ f"`*_model_states.pt`(saved by deepspeed) can be parsed. If you want to load a "
330
+ f"specific weight file, please provide the full path to the file."
331
+ )
332
+ elif dit_weight.is_file():
333
+ model_path = dit_weight
334
+ bare_model = "unknown"
335
+ else:
336
+ raise ValueError(f"Invalid model path: {dit_weight}")
337
+
338
+ if not model_path.exists():
339
+ raise ValueError(f"model_path not exists: {model_path}")
340
+ logger.info(f"Loading torch model {model_path}...")
341
+ state_dict = torch.load(model_path, map_location=lambda storage, loc: storage)
342
+
343
+ if bare_model == "unknown" and ("ema" in state_dict or "module" in state_dict):
344
+ bare_model = False
345
+ if bare_model is False:
346
+ if load_key in state_dict:
347
+ state_dict = state_dict[load_key]
348
+ else:
349
+ raise KeyError(
350
+ f"Missing key: `{load_key}` in the checkpoint: {model_path}. The keys in the checkpoint "
351
+ f"are: {list(state_dict.keys())}."
352
+ )
353
+ model.load_state_dict(state_dict, strict=True)
354
+ return model
355
+
356
+ @staticmethod
357
+ def parse_size(size):
358
+ if isinstance(size, int):
359
+ size = [size]
360
+ if not isinstance(size, (list, tuple)):
361
+ raise ValueError(f"Size must be an integer or (height, width), got {size}.")
362
+ if len(size) == 1:
363
+ size = [size[0], size[0]]
364
+ if len(size) != 2:
365
+ raise ValueError(f"Size must be an integer or (height, width), got {size}.")
366
+ return size
367
+
368
+
369
+ class HunyuanVideoSampler(Inference):
370
+ def __init__(
371
+ self,
372
+ args,
373
+ vae,
374
+ vae_kwargs,
375
+ text_encoder,
376
+ model,
377
+ text_encoder_2=None,
378
+ pipeline=None,
379
+ use_cpu_offload=False,
380
+ device=0,
381
+ logger=None,
382
+ parallel_args=None
383
+ ):
384
+ super().__init__(
385
+ args,
386
+ vae,
387
+ vae_kwargs,
388
+ text_encoder,
389
+ model,
390
+ text_encoder_2=text_encoder_2,
391
+ pipeline=pipeline,
392
+ use_cpu_offload=use_cpu_offload,
393
+ device=device,
394
+ logger=logger,
395
+ parallel_args=parallel_args
396
+ )
397
+
398
+ self.pipeline = self.load_diffusion_pipeline(
399
+ args=args,
400
+ vae=self.vae,
401
+ text_encoder=self.text_encoder,
402
+ text_encoder_2=self.text_encoder_2,
403
+ model=self.model,
404
+ device=self.device,
405
+ )
406
+
407
+ self.default_negative_prompt = NEGATIVE_PROMPT
408
+ if self.parallel_args['ulysses_degree'] > 1 or self.parallel_args['ring_degree'] > 1:
409
+ parallelize_transformer(self.pipeline)
410
+
411
+ def load_diffusion_pipeline(
412
+ self,
413
+ args,
414
+ vae,
415
+ text_encoder,
416
+ text_encoder_2,
417
+ model,
418
+ scheduler=None,
419
+ device=None,
420
+ progress_bar_config=None,
421
+ data_type="video",
422
+ ):
423
+ """Load the denoising scheduler for inference."""
424
+ if scheduler is None:
425
+ if args.denoise_type == "flow":
426
+ scheduler = FlowMatchDiscreteScheduler(
427
+ shift=args.flow_shift,
428
+ reverse=args.flow_reverse,
429
+ solver=args.flow_solver,
430
+ )
431
+ else:
432
+ raise ValueError(f"Invalid denoise type {args.denoise_type}")
433
+
434
+ pipeline = HunyuanVideoPipeline(
435
+ vae=vae,
436
+ text_encoder=text_encoder,
437
+ text_encoder_2=text_encoder_2,
438
+ transformer=model,
439
+ scheduler=scheduler,
440
+ progress_bar_config=progress_bar_config,
441
+ args=args,
442
+ )
443
+ if self.use_cpu_offload:
444
+ pipeline.enable_sequential_cpu_offload()
445
+ else:
446
+ pipeline = pipeline.to(device)
447
+
448
+ return pipeline
449
+
450
+ def get_rotary_pos_embed(self, video_length, height, width):
451
+ target_ndim = 3
452
+ ndim = 5 - 2
453
+ # 884
454
+ if "884" in self.args.vae:
455
+ latents_size = [(video_length - 1) // 4 + 1, height // 8, width // 8]
456
+ elif "888" in self.args.vae:
457
+ latents_size = [(video_length - 1) // 8 + 1, height // 8, width // 8]
458
+ else:
459
+ latents_size = [video_length, height // 8, width // 8]
460
+
461
+ if isinstance(self.model.patch_size, int):
462
+ assert all(s % self.model.patch_size == 0 for s in latents_size), (
463
+ f"Latent size(last {ndim} dimensions) should be divisible by patch size({self.model.patch_size}), "
464
+ f"but got {latents_size}."
465
+ )
466
+ rope_sizes = [s // self.model.patch_size for s in latents_size]
467
+ elif isinstance(self.model.patch_size, list):
468
+ assert all(
469
+ s % self.model.patch_size[idx] == 0
470
+ for idx, s in enumerate(latents_size)
471
+ ), (
472
+ f"Latent size(last {ndim} dimensions) should be divisible by patch size({self.model.patch_size}), "
473
+ f"but got {latents_size}."
474
+ )
475
+ rope_sizes = [
476
+ s // self.model.patch_size[idx] for idx, s in enumerate(latents_size)
477
+ ]
478
+
479
+ if len(rope_sizes) != target_ndim:
480
+ rope_sizes = [1] * (target_ndim - len(rope_sizes)) + rope_sizes # time axis
481
+ head_dim = self.model.hidden_size // self.model.heads_num
482
+ rope_dim_list = self.model.rope_dim_list
483
+ if rope_dim_list is None:
484
+ rope_dim_list = [head_dim // target_ndim for _ in range(target_ndim)]
485
+ assert (
486
+ sum(rope_dim_list) == head_dim
487
+ ), "sum(rope_dim_list) should equal to head_dim of attention layer"
488
+ freqs_cos, freqs_sin = get_nd_rotary_pos_embed(
489
+ rope_dim_list,
490
+ rope_sizes,
491
+ theta=self.args.rope_theta,
492
+ use_real=True,
493
+ theta_rescale_factor=1,
494
+ )
495
+ return freqs_cos, freqs_sin
496
+
497
+ @torch.no_grad()
498
+ def predict(
499
+ self,
500
+ prompt,
501
+ height=192,
502
+ width=336,
503
+ video_length=129,
504
+ seed=None,
505
+ negative_prompt=None,
506
+ infer_steps=50,
507
+ guidance_scale=6,
508
+ flow_shift=5.0,
509
+ embedded_guidance_scale=None,
510
+ batch_size=1,
511
+ num_videos_per_prompt=1,
512
+ **kwargs,
513
+ ):
514
+ """
515
+ Predict the image/video from the given text.
516
+
517
+ Args:
518
+ prompt (str or List[str]): The input text.
519
+ kwargs:
520
+ height (int): The height of the output video. Default is 192.
521
+ width (int): The width of the output video. Default is 336.
522
+ video_length (int): The frame number of the output video. Default is 129.
523
+ seed (int or List[str]): The random seed for the generation. Default is a random integer.
524
+ negative_prompt (str or List[str]): The negative text prompt. Default is an empty string.
525
+ guidance_scale (float): The guidance scale for the generation. Default is 6.0.
526
+ num_images_per_prompt (int): The number of images per prompt. Default is 1.
527
+ infer_steps (int): The number of inference steps. Default is 100.
528
+ """
529
+ out_dict = dict()
530
+
531
+ # ========================================================================
532
+ # Arguments: seed
533
+ # ========================================================================
534
+ if isinstance(seed, torch.Tensor):
535
+ seed = seed.tolist()
536
+ if seed is None:
537
+ seeds = [
538
+ random.randint(0, 1_000_000)
539
+ for _ in range(batch_size * num_videos_per_prompt)
540
+ ]
541
+ elif isinstance(seed, int):
542
+ seeds = [
543
+ seed + i
544
+ for _ in range(batch_size)
545
+ for i in range(num_videos_per_prompt)
546
+ ]
547
+ elif isinstance(seed, (list, tuple)):
548
+ if len(seed) == batch_size:
549
+ seeds = [
550
+ int(seed[i]) + j
551
+ for i in range(batch_size)
552
+ for j in range(num_videos_per_prompt)
553
+ ]
554
+ elif len(seed) == batch_size * num_videos_per_prompt:
555
+ seeds = [int(s) for s in seed]
556
+ else:
557
+ raise ValueError(
558
+ f"Length of seed must be equal to number of prompt(batch_size) or "
559
+ f"batch_size * num_videos_per_prompt ({batch_size} * {num_videos_per_prompt}), got {seed}."
560
+ )
561
+ else:
562
+ raise ValueError(
563
+ f"Seed must be an integer, a list of integers, or None, got {seed}."
564
+ )
565
+ generator = [torch.Generator(self.device).manual_seed(seed) for seed in seeds]
566
+ out_dict["seeds"] = seeds
567
+
568
+ # ========================================================================
569
+ # Arguments: target_width, target_height, target_video_length
570
+ # ========================================================================
571
+ if width <= 0 or height <= 0 or video_length <= 0:
572
+ raise ValueError(
573
+ f"`height` and `width` and `video_length` must be positive integers, got height={height}, width={width}, video_length={video_length}"
574
+ )
575
+ if (video_length - 1) % 4 != 0:
576
+ raise ValueError(
577
+ f"`video_length-1` must be a multiple of 4, got {video_length}"
578
+ )
579
+
580
+ logger.info(
581
+ f"Input (height, width, video_length) = ({height}, {width}, {video_length})"
582
+ )
583
+
584
+ target_height = align_to(height, 16)
585
+ target_width = align_to(width, 16)
586
+ target_video_length = video_length
587
+
588
+ out_dict["size"] = (target_height, target_width, target_video_length)
589
+
590
+ # ========================================================================
591
+ # Arguments: prompt, new_prompt, negative_prompt
592
+ # ========================================================================
593
+ if not isinstance(prompt, str):
594
+ raise TypeError(f"`prompt` must be a string, but got {type(prompt)}")
595
+ prompt = [prompt.strip()]
596
+
597
+ # negative prompt
598
+ if negative_prompt is None or negative_prompt == "":
599
+ negative_prompt = self.default_negative_prompt
600
+ if not isinstance(negative_prompt, str):
601
+ raise TypeError(
602
+ f"`negative_prompt` must be a string, but got {type(negative_prompt)}"
603
+ )
604
+ negative_prompt = [negative_prompt.strip()]
605
+
606
+ # ========================================================================
607
+ # Scheduler
608
+ # ========================================================================
609
+ scheduler = FlowMatchDiscreteScheduler(
610
+ shift=flow_shift,
611
+ reverse=self.args.flow_reverse,
612
+ solver=self.args.flow_solver
613
+ )
614
+ self.pipeline.scheduler = scheduler
615
+
616
+ # ========================================================================
617
+ # Build Rope freqs
618
+ # ========================================================================
619
+ freqs_cos, freqs_sin = self.get_rotary_pos_embed(
620
+ target_video_length, target_height, target_width
621
+ )
622
+ n_tokens = freqs_cos.shape[0]
623
+
624
+ # ========================================================================
625
+ # Print infer args
626
+ # ========================================================================
627
+ debug_str = f"""
628
+ height: {target_height}
629
+ width: {target_width}
630
+ video_length: {target_video_length}
631
+ prompt: {prompt}
632
+ neg_prompt: {negative_prompt}
633
+ seed: {seed}
634
+ infer_steps: {infer_steps}
635
+ num_videos_per_prompt: {num_videos_per_prompt}
636
+ guidance_scale: {guidance_scale}
637
+ n_tokens: {n_tokens}
638
+ flow_shift: {flow_shift}
639
+ embedded_guidance_scale: {embedded_guidance_scale}"""
640
+ logger.debug(debug_str)
641
+
642
+ # ========================================================================
643
+ # Pipeline inference
644
+ # ========================================================================
645
+ start_time = time.time()
646
+ samples = self.pipeline(
647
+ prompt=prompt,
648
+ height=target_height,
649
+ width=target_width,
650
+ video_length=target_video_length,
651
+ num_inference_steps=infer_steps,
652
+ guidance_scale=guidance_scale,
653
+ negative_prompt=negative_prompt,
654
+ num_videos_per_prompt=num_videos_per_prompt,
655
+ generator=generator,
656
+ output_type="pil",
657
+ freqs_cis=(freqs_cos, freqs_sin),
658
+ n_tokens=n_tokens,
659
+ embedded_guidance_scale=embedded_guidance_scale,
660
+ data_type="video" if target_video_length > 1 else "image",
661
+ is_progress_bar=True,
662
+ vae_ver=self.args.vae,
663
+ enable_tiling=self.args.vae_tiling,
664
+ )[0]
665
+ out_dict["samples"] = samples
666
+ out_dict["prompts"] = prompt
667
+
668
+ gen_time = time.time() - start_time
669
+ logger.info(f"Success, time: {gen_time}")
670
+
671
+ return out_dict
hyvideo/prompt_rewrite.py CHANGED
@@ -1,51 +1,51 @@
1
- normal_mode_prompt = """Normal mode - Video Recaption Task:
2
-
3
- You are a large language model specialized in rewriting video descriptions. Your task is to modify the input description.
4
-
5
- 0. Preserve ALL information, including style words and technical terms.
6
-
7
- 1. If the input is in Chinese, translate the entire description to English.
8
-
9
- 2. If the input is just one or two words describing an object or person, provide a brief, simple description focusing on basic visual characteristics. Limit the description to 1-2 short sentences.
10
-
11
- 3. If the input does not include style, lighting, atmosphere, you can make reasonable associations.
12
-
13
- 4. Output ALL must be in English.
14
-
15
- Given Input:
16
- input: "{input}"
17
- """
18
-
19
-
20
- master_mode_prompt = """Master mode - Video Recaption Task:
21
-
22
- You are a large language model specialized in rewriting video descriptions. Your task is to modify the input description.
23
-
24
- 0. Preserve ALL information, including style words and technical terms.
25
-
26
- 1. If the input is in Chinese, translate the entire description to English.
27
-
28
- 2. If the input is just one or two words describing an object or person, provide a brief, simple description focusing on basic visual characteristics. Limit the description to 1-2 short sentences.
29
-
30
- 3. If the input does not include style, lighting, atmosphere, you can make reasonable associations.
31
-
32
- 4. Output ALL must be in English.
33
-
34
- Given Input:
35
- input: "{input}"
36
- """
37
-
38
- def get_rewrite_prompt(ori_prompt, mode="Normal"):
39
- if mode == "Normal":
40
- prompt = normal_mode_prompt.format(input=ori_prompt)
41
- elif mode == "Master":
42
- prompt = master_mode_prompt.format(input=ori_prompt)
43
- else:
44
- raise Exception("Only supports Normal and Normal", mode)
45
- return prompt
46
-
47
- ori_prompt = "一只小狗在草地上奔跑。"
48
- normal_prompt = get_rewrite_prompt(ori_prompt, mode="Normal")
49
- master_prompt = get_rewrite_prompt(ori_prompt, mode="Master")
50
-
51
  # Then you can use the normal_prompt or master_prompt to access the hunyuan-large rewrite model to get the final prompt.
 
1
+ normal_mode_prompt = """Normal mode - Video Recaption Task:
2
+
3
+ You are a large language model specialized in rewriting video descriptions. Your task is to modify the input description.
4
+
5
+ 0. Preserve ALL information, including style words and technical terms.
6
+
7
+ 1. If the input is in Chinese, translate the entire description to English.
8
+
9
+ 2. If the input is just one or two words describing an object or person, provide a brief, simple description focusing on basic visual characteristics. Limit the description to 1-2 short sentences.
10
+
11
+ 3. If the input does not include style, lighting, atmosphere, you can make reasonable associations.
12
+
13
+ 4. Output ALL must be in English.
14
+
15
+ Given Input:
16
+ input: "{input}"
17
+ """
18
+
19
+
20
+ master_mode_prompt = """Master mode - Video Recaption Task:
21
+
22
+ You are a large language model specialized in rewriting video descriptions. Your task is to modify the input description.
23
+
24
+ 0. Preserve ALL information, including style words and technical terms.
25
+
26
+ 1. If the input is in Chinese, translate the entire description to English.
27
+
28
+ 2. If the input is just one or two words describing an object or person, provide a brief, simple description focusing on basic visual characteristics. Limit the description to 1-2 short sentences.
29
+
30
+ 3. If the input does not include style, lighting, atmosphere, you can make reasonable associations.
31
+
32
+ 4. Output ALL must be in English.
33
+
34
+ Given Input:
35
+ input: "{input}"
36
+ """
37
+
38
+ def get_rewrite_prompt(ori_prompt, mode="Normal"):
39
+ if mode == "Normal":
40
+ prompt = normal_mode_prompt.format(input=ori_prompt)
41
+ elif mode == "Master":
42
+ prompt = master_mode_prompt.format(input=ori_prompt)
43
+ else:
44
+ raise Exception("Only supports Normal and Normal", mode)
45
+ return prompt
46
+
47
+ ori_prompt = "一只小狗在草地上奔跑。"
48
+ normal_prompt = get_rewrite_prompt(ori_prompt, mode="Normal")
49
+ master_prompt = get_rewrite_prompt(ori_prompt, mode="Master")
50
+
51
  # Then you can use the normal_prompt or master_prompt to access the hunyuan-large rewrite model to get the final prompt.