File size: 5,385 Bytes
1a03e08
 
 
 
 
 
d9c0937
1a03e08
 
 
 
 
 
 
d9c0937
 
1a03e08
 
 
 
 
 
 
 
 
 
 
 
 
 
d9c0937
 
 
a363bd1
ec82f37
 
a363bd1
 
ec82f37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a03e08
d9c0937
 
 
 
 
 
 
bd2ecfe
1a03e08
 
 
 
 
 
 
 
 
 
d9c0937
1a03e08
 
 
 
d9c0937
1a03e08
 
d9c0937
1a03e08
d9c0937
1a03e08
 
d9c0937
 
 
 
 
 
 
 
1a03e08
d9c0937
 
 
f9767c2
 
 
d9c0937
 
 
 
 
 
1a03e08
 
 
 
d9c0937
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a03e08
 
 
 
 
d9c0937
1a03e08
d9c0937
 
 
 
1a03e08
 
d9c0937
 
 
 
1a03e08
 
d9c0937
 
bd2ecfe
d9c0937
1a03e08
d9c0937
1a03e08
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import glob
import gradio as gr
import pandas as pd
import faiss
import clip
import torch
from huggingface_hub import hf_hub_download, snapshot_download

title = r"""
<h1 align="center" id="space-title"> 🔍 Search Similar Text/Image in the Dataset</h1>
"""

description = r"""

Find text or images similar to your query text with this demo. Currently, it supports text search only.<br>
In this demo, we use a subset of [danbooru22](https://huggingface.co./datasets/animelover/danbooru2022) or [DiffusionDB](https://huggingface.co./datasets/poloclub/diffusiondb) instead of [LAION](https://laion.ai/blog/laion-400-open-dataset/) because LAION is currently not available. 
<br>
The content will be updated to include image search once LAION is available.

The code is based on [clip-retrieval](https://github.com/rom1504/clip-retrieval) and [autofaiss](https://github.com/criteo/autofaiss)

"""

# From local file
# INDEX_DIR = "dataset/diffusiondb/text_index_folder"
# IND = faiss.read_index(f"{INDEX_DIR}/text.index")
# TEXT_LIST = pd.concat(
#     pd.read_parquet(file) for file in glob.glob(f"{INDEX_DIR}/metadata/*.parquet")
# )['caption'].tolist()

def download_all_index(dataset_dict):
    for k in dataset_dict:
        load_faiss_index(k)

def load_faiss_index(dataset):
    index_dir = "data/faiss_index"
    dataset = DATASET_NAME[dataset]

    hf_hub_download(
        repo_id="Eun02/text_image_faiss_index",
        subfolder=dataset,
        filename="text.index",
        repo_type="dataset",
        local_dir=index_dir,
    )

    # Download text file
    snapshot_download(
        repo_id="Eun02/text_image_faiss_index", 
        allow_patterns=f"{dataset}/*.parquet",
        repo_type="dataset",
        local_dir=index_dir,
    )
    index = faiss.read_index(f"{index_dir}/{dataset}/text.index")
    text_list = pd.concat(
        pd.read_parquet(file) for file in sorted(glob.glob(f"{index_dir}/{dataset}/metadata/*.parquet"))
    )['caption'].tolist()

    return index, text_list

def change_index(dataset):
    global INDEX, TEXT_LIST, PREV_DATASET
    if PREV_DATASET != dataset:
        gr.Info("Load index...")
        INDEX, TEXT_LIST = load_faiss_index(dataset)
        PREV_DATASET = dataset
        gr.Info("Done!!")
    return None

@torch.inference_mode
def get_emb(text, device="cpu"):
    text_tokens = clip.tokenize([text], truncate=True)
    text_features = CLIP_MODEL.encode_text(text_tokens.to(device))
    text_features /= text_features.norm(dim=-1, keepdim=True)
    text_embeddings = text_features.cpu().numpy().astype('float32')
    return text_embeddings

@torch.inference_mode
def search_text(top_k, show_score, numbering_prefix, output_file, query_text):
    if query_text is None or query_text == "":
        raise gr.Error("Query text is missing")
    
    text_embeddings = get_emb(query_text, device)
    scores, retrieved_texts = INDEX.search(text_embeddings, top_k)
    scores, retrieved_texts = scores[0], retrieved_texts[0]

    result_list = [] 
    for score, ind in zip(scores, retrieved_texts):
        item_str = TEXT_LIST[ind].strip()
        if item_str == "":
            continue
        if (item_str, score) not in result_list:
            result_list.append((item_str, score))

    # Postprocessing text
    result_str = ""
    for count, (item_str, score) in enumerate(result_list):
        if numbering_prefix: 
            item_str = f"######################  {count+1}  ######################\n {item_str}"
        if show_score:
            item_str += f", {score:0.2f}"
        result_str += f"{item_str}\n"
            
    # file_name = query_text.replace(" ", "_")
    # if show_score:
    #     file_name += "_score"
    output_path = None
    if output_file:
        file_name = "output"
        output_path = f"./{file_name}.txt"
        with open(output_path, "w") as f:
            f.writelines(result_str)
    
    return result_str, output_path


# Load CLIP model
device = "cpu"
CLIP_MODEL, _ = clip.load("ViT-B/32", device=device)

# Dataset
DATASET_NAME = {
    "danbooru22": "booru22_000-300",
    "DiffusionDB": "diffusiondb",
}

DEFAULT_DATASET = "danbooru22"
PREV_DATASET = "danbooru22"

# Download needed index
download_all_index(DATASET_NAME)

# Load default index
INDEX, TEXT_LIST = load_faiss_index(DEFAULT_DATASET)


with gr.Blocks() as demo:
    gr.Markdown(title)
    gr.Markdown(description)

    with gr.Row():
        dataset = gr.Dropdown(label="dataset", choices=["danbooru22", "DiffusionDB"], value=DEFAULT_DATASET)
        top_k = gr.Slider(label="top k", minimum=1, maximum=20, value=8)
        with gr.Column():
            show_score = gr.Checkbox(label="Show score", value=False)
            numbering_prefix = gr.Checkbox(label="Add numbering prefix", value=True)
            output_file = gr.Checkbox(label="Return text file", value=True)
    query_text = gr.Textbox(label="query text")
    btn = gr.Button()
    result_text = gr.Textbox(label="retrieved text", interactive=False)
    result_file = gr.File(label="output file", visible=True)
    
    #dataset.change(change_index, dataset, None)

    btn.click(
        fn=change_index,
        inputs=[dataset],
        outputs=[result_text],
    ).success(
        fn=search_text,
        inputs=[top_k, show_score, numbering_prefix, output_file, query_text],
        outputs=[result_text, result_file],
    )

demo.launch()