Spaces:
Runtime error
Runtime error
Add app file
Browse files
app.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob
|
2 |
+
import gradio as gr
|
3 |
+
import pandas as pd
|
4 |
+
import faiss
|
5 |
+
import clip
|
6 |
+
import torch
|
7 |
+
from datasets import load_dataset
|
8 |
+
|
9 |
+
title = r"""
|
10 |
+
<h1 align="center" id="space-title"> 🔍 Search Similar Text/Image in the Dataset</h1>
|
11 |
+
"""
|
12 |
+
|
13 |
+
description = r"""
|
14 |
+
|
15 |
+
In this demo, we use [DiffusionDB](https://huggingface.co/datasets/poloclub/diffusiondb) instead of [LAION](https://laion.ai/blog/laion-400-open-dataset/) because LAION is currently not available.
|
16 |
+
<br>
|
17 |
+
This demo currently supports text search only.
|
18 |
+
<br>
|
19 |
+
The content will be updated to include image search once LAION is available.
|
20 |
+
|
21 |
+
The code is based on [clip-retrieval](https://github.com/rom1504/clip-retrieval) and [autofaiss](https://github.com/criteo/autofaiss)
|
22 |
+
|
23 |
+
"""
|
24 |
+
|
25 |
+
# From local file
|
26 |
+
# INDEX_DIR = "dataset/diffusiondb/text_index_folder"
|
27 |
+
# IND = faiss.read_index(f"{INDEX_DIR}/text.index")
|
28 |
+
# TEXT_LIST = pd.concat(
|
29 |
+
# pd.read_parquet(file) for file in glob.glob(f"{INDEX_DIR}/metadata/*.parquet")
|
30 |
+
# )['caption'].tolist()
|
31 |
+
|
32 |
+
# From huggingface dataset
|
33 |
+
from huggingface_hub import hf_hub_download, snapshot_download
|
34 |
+
|
35 |
+
# Download index file
|
36 |
+
hf_hub_download(
|
37 |
+
repo_id="Eun02/diffusiondb_faiss_text_index",
|
38 |
+
filename="text.index",
|
39 |
+
repo_type="dataset",
|
40 |
+
local_dir="./",
|
41 |
+
)
|
42 |
+
|
43 |
+
# Download text file
|
44 |
+
snapshot_download(
|
45 |
+
repo_id="Eun02/diffusiondb_faiss_text_index",
|
46 |
+
allow_patterns="*.parquet",
|
47 |
+
repo_type="dataset",
|
48 |
+
local_dir="./",
|
49 |
+
)
|
50 |
+
|
51 |
+
# Load index and text data
|
52 |
+
#root_path = "dataset/diffusiondb/text_index_folder"
|
53 |
+
root_path = "."
|
54 |
+
IND = faiss.read_index(f"{root_path}/text.index")
|
55 |
+
TEXT_LIST = pd.concat(
|
56 |
+
pd.read_parquet(file) for file in sorted(glob.glob(f"{root_path}/metadata/*.parquet"))
|
57 |
+
)['caption'].tolist()
|
58 |
+
|
59 |
+
# Load CLIP model
|
60 |
+
device = "cpu"
|
61 |
+
CLIP_MODEL, _ = clip.load("ViT-B/32", device=device)
|
62 |
+
|
63 |
+
@torch.inference_mode
|
64 |
+
def get_emb(text, device="cpu"):
|
65 |
+
text_tokens = clip.tokenize([text], truncate=True)
|
66 |
+
text_features = CLIP_MODEL.encode_text(text_tokens.to(device))
|
67 |
+
text_features /= text_features.norm(dim=-1, keepdim=True)
|
68 |
+
text_embeddings = text_features.cpu().numpy().astype('float32')
|
69 |
+
return text_embeddings
|
70 |
+
|
71 |
+
@torch.inference_mode
|
72 |
+
def search_text(dataset, top_k, show_score, query_text, device):
|
73 |
+
|
74 |
+
if query_text is None or query_text == "":
|
75 |
+
raise gr.Error("Query text is missing")
|
76 |
+
|
77 |
+
text_embeddings = get_emb(query_text, device)
|
78 |
+
scores, retrieved_texts = IND.search(text_embeddings, top_k)
|
79 |
+
scores, retrieved_texts = scores[0], retrieved_texts[0]
|
80 |
+
|
81 |
+
result_str = ""
|
82 |
+
for score, ind in zip(scores, retrieved_texts):
|
83 |
+
item_str = TEXT_LIST[ind].strip()
|
84 |
+
if item_str == "":
|
85 |
+
continue
|
86 |
+
result_str += f"{item_str}"
|
87 |
+
if show_score:
|
88 |
+
result_str += f", {score:0.2f}"
|
89 |
+
result_str += "\n"
|
90 |
+
|
91 |
+
file_name = query_text.replace(" ", "_")
|
92 |
+
if show_score:
|
93 |
+
file_name += "_score"
|
94 |
+
output_path = f"./{file_name}.txt"
|
95 |
+
with open(output_path, "w") as f:
|
96 |
+
f.writelines(result_str)
|
97 |
+
|
98 |
+
return result_str, output_path
|
99 |
+
|
100 |
+
|
101 |
+
with gr.Blocks() as demo:
|
102 |
+
gr.Markdown(title)
|
103 |
+
gr.Markdown(description)
|
104 |
+
|
105 |
+
with gr.Row():
|
106 |
+
dataset = gr.Dropdown(label="dataset", choices=["DiffusionDB"], value="DiffusionDB")
|
107 |
+
top_k = gr.Slider(label="top k", minimum=1, maximum=20, value=8)
|
108 |
+
show_score = gr.Checkbox(label="Show score", value=True)
|
109 |
+
query_text = gr.Textbox(label="query text")
|
110 |
+
btn = gr.Button()
|
111 |
+
with gr.Row():
|
112 |
+
result_text = gr.Textbox(label="retrieved text", interactive=False)
|
113 |
+
result_file = gr.File(label="output file")
|
114 |
+
|
115 |
+
btn.click(
|
116 |
+
fn=search_text,
|
117 |
+
inputs=[dataset, top_k, show_score, query_text],
|
118 |
+
outputs=[result_text, result_file],
|
119 |
+
)
|
120 |
+
|
121 |
+
demo.launch()
|