CropyieldZaliAi / sugar_cane_prediction.py
Esmaeilkiani's picture
Rename app.py to sugar_cane_prediction.py
6633234 verified
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error, r2_score
import joblib
# Load the data
data = pd.read_csv('sugar_cane_data.csv')
# Data preprocessing
data['Farm'] = data['Farm'].astype(str)
data['Variety'] = data['Variety'].fillna('Unknown')
data['Age'] = data['Age'].fillna('Unknown')
# Split features and target variables
X = data[['Farm', 'Variety', 'Age']]
y = data[['Brix', 'Purity', 'Pol', 'RS']]
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Create preprocessing steps
preprocessor = ColumnTransformer(
transformers=[
('num', StandardScaler(), []),
('cat', OneHotEncoder(handle_unknown='ignore'), ['Farm', 'Variety', 'Age'])
])
# Create a pipeline with preprocessor and random forest regressor
model = Pipeline([
('preprocessor', preprocessor),
('regressor', RandomForestRegressor(n_estimators=100, random_state=42))
])
# Fit the model
model.fit(X_train, y_train)
# Make predictions on the test set
y_pred = model.predict(X_test)
# Evaluate the model
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print(f"Mean Squared Error: {mse}")
print(f"R-squared Score: {r2}")
# Save the model
joblib.dump(model, 'sugar_cane_model.joblib')
# Function to make predictions for new data
def predict_sugar_cane_properties(farm, variety, age):
new_data = pd.DataFrame({'Farm': [farm], 'Variety': [variety], 'Age': [age]})
prediction = model.predict(new_data)
return {
'Brix': prediction[0][0],
'Purity': prediction[0][1],
'Pol': prediction[0][2],
'RS': prediction[0][3]
}
# Example usage
print(predict_sugar_cane_properties('01-18', 'CP69', 'P'))