import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error, r2_score import joblib # Load the data data = pd.read_csv('sugar_cane_data.csv') # Data preprocessing data['Farm'] = data['Farm'].astype(str) data['Variety'] = data['Variety'].fillna('Unknown') data['Age'] = data['Age'].fillna('Unknown') # Split features and target variables X = data[['Farm', 'Variety', 'Age']] y = data[['Brix', 'Purity', 'Pol', 'RS']] # Split the data into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Create preprocessing steps preprocessor = ColumnTransformer( transformers=[ ('num', StandardScaler(), []), ('cat', OneHotEncoder(handle_unknown='ignore'), ['Farm', 'Variety', 'Age']) ]) # Create a pipeline with preprocessor and random forest regressor model = Pipeline([ ('preprocessor', preprocessor), ('regressor', RandomForestRegressor(n_estimators=100, random_state=42)) ]) # Fit the model model.fit(X_train, y_train) # Make predictions on the test set y_pred = model.predict(X_test) # Evaluate the model mse = mean_squared_error(y_test, y_pred) r2 = r2_score(y_test, y_pred) print(f"Mean Squared Error: {mse}") print(f"R-squared Score: {r2}") # Save the model joblib.dump(model, 'sugar_cane_model.joblib') # Function to make predictions for new data def predict_sugar_cane_properties(farm, variety, age): new_data = pd.DataFrame({'Farm': [farm], 'Variety': [variety], 'Age': [age]}) prediction = model.predict(new_data) return { 'Brix': prediction[0][0], 'Purity': prediction[0][1], 'Pol': prediction[0][2], 'RS': prediction[0][3] } # Example usage print(predict_sugar_cane_properties('01-18', 'CP69', 'P'))