Spaces:
Sleeping
Sleeping
DrishtiSharma
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,7 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import sqlite3
|
4 |
-
import tempfile
|
5 |
-
from fpdf import FPDF
|
6 |
import os
|
7 |
-
import re
|
8 |
import json
|
9 |
from pathlib import Path
|
10 |
import plotly.express as px
|
@@ -33,6 +30,7 @@ llm = None
|
|
33 |
# Model Selection
|
34 |
model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True)
|
35 |
|
|
|
36 |
# API Key Validation and LLM Initialization
|
37 |
groq_api_key = os.getenv("GROQ_API_KEY")
|
38 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
@@ -53,12 +51,9 @@ elif model_choice == "GPT-4o":
|
|
53 |
# Initialize session state for data persistence
|
54 |
if "df" not in st.session_state:
|
55 |
st.session_state.df = None
|
56 |
-
if "show_preview" not in st.session_state:
|
57 |
-
st.session_state.show_preview = False
|
58 |
|
59 |
# Dataset Input
|
60 |
input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"])
|
61 |
-
|
62 |
if input_option == "Use Hugging Face Dataset":
|
63 |
dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries")
|
64 |
if st.button("Load Dataset"):
|
@@ -66,338 +61,16 @@ if input_option == "Use Hugging Face Dataset":
|
|
66 |
with st.spinner("Loading dataset..."):
|
67 |
dataset = load_dataset(dataset_name, split="train")
|
68 |
st.session_state.df = pd.DataFrame(dataset)
|
69 |
-
st.session_state.show_preview = True # Show preview after loading
|
70 |
st.success(f"Dataset '{dataset_name}' loaded successfully!")
|
|
|
71 |
except Exception as e:
|
72 |
st.error(f"Error: {e}")
|
73 |
-
|
74 |
elif input_option == "Upload CSV File":
|
75 |
uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"])
|
76 |
if uploaded_file:
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
st.success("File uploaded successfully!")
|
81 |
-
except Exception as e:
|
82 |
-
st.error(f"Error loading file: {e}")
|
83 |
-
|
84 |
-
# Show Dataset Preview Only After Loading
|
85 |
-
if st.session_state.df is not None and st.session_state.show_preview:
|
86 |
-
st.subheader("π Dataset Preview")
|
87 |
-
st.dataframe(st.session_state.df.head())
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
def ask_gpt4o_for_visualization(query, df, llm):
|
93 |
-
columns = ', '.join(df.columns)
|
94 |
-
prompt = f"""
|
95 |
-
Analyze the query and suggest one or more relevant visualizations.
|
96 |
-
Query: "{query}"
|
97 |
-
Available Columns: {columns}
|
98 |
-
Respond in this JSON format (as a list if multiple suggestions):
|
99 |
-
[
|
100 |
-
{{
|
101 |
-
"chart_type": "bar/box/line/scatter",
|
102 |
-
"x_axis": "column_name",
|
103 |
-
"y_axis": "column_name",
|
104 |
-
"group_by": "optional_column_name"
|
105 |
-
}}
|
106 |
-
]
|
107 |
-
"""
|
108 |
-
response = llm.generate(prompt)
|
109 |
-
try:
|
110 |
-
return json.loads(response)
|
111 |
-
except json.JSONDecodeError:
|
112 |
-
st.error("β οΈ GPT-4o failed to generate a valid suggestion.")
|
113 |
-
return None
|
114 |
-
|
115 |
-
def add_stats_to_figure(fig, df, y_axis, chart_type):
|
116 |
-
"""
|
117 |
-
Add relevant statistical annotations to the visualization
|
118 |
-
based on the chart type.
|
119 |
-
"""
|
120 |
-
# Check if the y-axis column is numeric
|
121 |
-
if not pd.api.types.is_numeric_dtype(df[y_axis]):
|
122 |
-
st.warning(f"β οΈ Cannot compute statistics for non-numeric column: {y_axis}")
|
123 |
-
return fig
|
124 |
-
|
125 |
-
# Compute statistics for numeric data
|
126 |
-
min_val = df[y_axis].min()
|
127 |
-
max_val = df[y_axis].max()
|
128 |
-
avg_val = df[y_axis].mean()
|
129 |
-
median_val = df[y_axis].median()
|
130 |
-
std_dev_val = df[y_axis].std()
|
131 |
-
|
132 |
-
# Format the stats for display
|
133 |
-
stats_text = (
|
134 |
-
f"π **Statistics**\n\n"
|
135 |
-
f"- **Min:** ${min_val:,.2f}\n"
|
136 |
-
f"- **Max:** ${max_val:,.2f}\n"
|
137 |
-
f"- **Average:** ${avg_val:,.2f}\n"
|
138 |
-
f"- **Median:** ${median_val:,.2f}\n"
|
139 |
-
f"- **Std Dev:** ${std_dev_val:,.2f}"
|
140 |
-
)
|
141 |
-
|
142 |
-
# Apply stats only to relevant chart types
|
143 |
-
if chart_type in ["bar", "line"]:
|
144 |
-
# Add annotation box for bar and line charts
|
145 |
-
fig.add_annotation(
|
146 |
-
text=stats_text,
|
147 |
-
xref="paper", yref="paper",
|
148 |
-
x=1.02, y=1,
|
149 |
-
showarrow=False,
|
150 |
-
align="left",
|
151 |
-
font=dict(size=12, color="black"),
|
152 |
-
bordercolor="gray",
|
153 |
-
borderwidth=1,
|
154 |
-
bgcolor="rgba(255, 255, 255, 0.85)"
|
155 |
-
)
|
156 |
-
|
157 |
-
# Add horizontal reference lines
|
158 |
-
fig.add_hline(y=min_val, line_dash="dot", line_color="red", annotation_text="Min", annotation_position="bottom right")
|
159 |
-
fig.add_hline(y=median_val, line_dash="dash", line_color="orange", annotation_text="Median", annotation_position="top right")
|
160 |
-
fig.add_hline(y=avg_val, line_dash="dashdot", line_color="green", annotation_text="Avg", annotation_position="top right")
|
161 |
-
fig.add_hline(y=max_val, line_dash="dot", line_color="blue", annotation_text="Max", annotation_position="top right")
|
162 |
-
|
163 |
-
elif chart_type == "scatter":
|
164 |
-
# Add stats annotation only, no lines for scatter plots
|
165 |
-
fig.add_annotation(
|
166 |
-
text=stats_text,
|
167 |
-
xref="paper", yref="paper",
|
168 |
-
x=1.02, y=1,
|
169 |
-
showarrow=False,
|
170 |
-
align="left",
|
171 |
-
font=dict(size=12, color="black"),
|
172 |
-
bordercolor="gray",
|
173 |
-
borderwidth=1,
|
174 |
-
bgcolor="rgba(255, 255, 255, 0.85)"
|
175 |
-
)
|
176 |
-
|
177 |
-
elif chart_type == "box":
|
178 |
-
# Box plots inherently show distribution; no extra stats needed
|
179 |
-
pass
|
180 |
-
|
181 |
-
elif chart_type == "pie":
|
182 |
-
# Pie charts represent proportions, not suitable for stats
|
183 |
-
st.info("π Pie charts represent proportions. Additional stats are not applicable.")
|
184 |
-
|
185 |
-
elif chart_type == "heatmap":
|
186 |
-
# Heatmaps already reflect data intensity
|
187 |
-
st.info("π Heatmaps inherently reflect distribution. No additional stats added.")
|
188 |
-
|
189 |
-
else:
|
190 |
-
st.warning(f"β οΈ No statistical overlays applied for unsupported chart type: '{chart_type}'.")
|
191 |
-
|
192 |
-
return fig
|
193 |
-
|
194 |
-
|
195 |
-
# Dynamically generate Plotly visualizations based on GPT-4o suggestions
|
196 |
-
def generate_visualization(suggestion, df):
|
197 |
-
"""
|
198 |
-
Generate a Plotly visualization based on GPT-4o's suggestion.
|
199 |
-
If the Y-axis is missing, infer it intelligently.
|
200 |
-
"""
|
201 |
-
chart_type = suggestion.get("chart_type", "bar").lower()
|
202 |
-
x_axis = suggestion.get("x_axis")
|
203 |
-
y_axis = suggestion.get("y_axis")
|
204 |
-
group_by = suggestion.get("group_by")
|
205 |
-
|
206 |
-
# Step 1: Infer Y-axis if not provided
|
207 |
-
if not y_axis:
|
208 |
-
numeric_columns = df.select_dtypes(include='number').columns.tolist()
|
209 |
-
|
210 |
-
# Avoid using the same column for both axes
|
211 |
-
if x_axis in numeric_columns:
|
212 |
-
numeric_columns.remove(x_axis)
|
213 |
-
|
214 |
-
# Smart guess: prioritize salary or relevant metrics if available
|
215 |
-
priority_columns = ["salary_in_usd", "income", "earnings", "revenue"]
|
216 |
-
for col in priority_columns:
|
217 |
-
if col in numeric_columns:
|
218 |
-
y_axis = col
|
219 |
-
break
|
220 |
-
|
221 |
-
# Fallback to the first numeric column if no priority columns exist
|
222 |
-
if not y_axis and numeric_columns:
|
223 |
-
y_axis = numeric_columns[0]
|
224 |
-
|
225 |
-
# Step 2: Validate axes
|
226 |
-
if not x_axis or not y_axis:
|
227 |
-
st.warning("β οΈ Unable to determine appropriate columns for visualization.")
|
228 |
-
return None
|
229 |
-
|
230 |
-
# Step 3: Dynamically select the Plotly function
|
231 |
-
plotly_function = getattr(px, chart_type, None)
|
232 |
-
if not plotly_function:
|
233 |
-
st.warning(f"β οΈ Unsupported chart type '{chart_type}' suggested by GPT-4o.")
|
234 |
-
return None
|
235 |
-
|
236 |
-
# Step 4: Prepare dynamic plot arguments
|
237 |
-
plot_args = {"data_frame": df, "x": x_axis, "y": y_axis}
|
238 |
-
if group_by and group_by in df.columns:
|
239 |
-
plot_args["color"] = group_by
|
240 |
-
|
241 |
-
try:
|
242 |
-
# Step 5: Generate the visualization
|
243 |
-
fig = plotly_function(**plot_args)
|
244 |
-
fig.update_layout(
|
245 |
-
title=f"{chart_type.title()} Plot of {y_axis.replace('_', ' ').title()} by {x_axis.replace('_', ' ').title()}",
|
246 |
-
xaxis_title=x_axis.replace('_', ' ').title(),
|
247 |
-
yaxis_title=y_axis.replace('_', ' ').title(),
|
248 |
-
)
|
249 |
-
|
250 |
-
# Step 6: Apply statistics intelligently
|
251 |
-
fig = add_statistics_to_visualization(fig, df, y_axis, chart_type)
|
252 |
-
|
253 |
-
return fig
|
254 |
-
|
255 |
-
except Exception as e:
|
256 |
-
st.error(f"β οΈ Failed to generate visualization: {e}")
|
257 |
-
return None
|
258 |
-
|
259 |
-
|
260 |
-
def generate_multiple_visualizations(suggestions, df):
|
261 |
-
"""
|
262 |
-
Generates one or more visualizations based on GPT-4o's suggestions.
|
263 |
-
Handles both single and multiple suggestions.
|
264 |
-
"""
|
265 |
-
visualizations = []
|
266 |
-
|
267 |
-
for suggestion in suggestions:
|
268 |
-
fig = generate_visualization(suggestion, df)
|
269 |
-
if fig:
|
270 |
-
# Apply chart-specific statistics
|
271 |
-
fig = add_stats_to_figure(fig, df, suggestion["y_axis"], suggestion["chart_type"])
|
272 |
-
visualizations.append(fig)
|
273 |
-
|
274 |
-
if not visualizations and suggestions:
|
275 |
-
st.warning("β οΈ No valid visualization found. Displaying the most relevant one.")
|
276 |
-
best_suggestion = suggestions[0]
|
277 |
-
fig = generate_visualization(best_suggestion, df)
|
278 |
-
fig = add_stats_to_figure(fig, df, best_suggestion["y_axis"], best_suggestion["chart_type"])
|
279 |
-
visualizations.append(fig)
|
280 |
-
|
281 |
-
return visualizations
|
282 |
-
|
283 |
-
|
284 |
-
def handle_visualization_suggestions(suggestions, df):
|
285 |
-
"""
|
286 |
-
Determines whether to generate a single or multiple visualizations.
|
287 |
-
"""
|
288 |
-
visualizations = []
|
289 |
-
|
290 |
-
# If multiple suggestions, generate multiple plots
|
291 |
-
if isinstance(suggestions, list) and len(suggestions) > 1:
|
292 |
-
visualizations = generate_multiple_visualizations(suggestions, df)
|
293 |
-
|
294 |
-
# If only one suggestion, generate a single plot
|
295 |
-
elif isinstance(suggestions, dict) or (isinstance(suggestions, list) and len(suggestions) == 1):
|
296 |
-
suggestion = suggestions[0] if isinstance(suggestions, list) else suggestions
|
297 |
-
fig = generate_visualization(suggestion, df)
|
298 |
-
if fig:
|
299 |
-
visualizations.append(fig)
|
300 |
-
|
301 |
-
# Handle cases when no visualization could be generated
|
302 |
-
if not visualizations:
|
303 |
-
st.warning("β οΈ Unable to generate any visualization based on the suggestion.")
|
304 |
-
|
305 |
-
# Display all generated visualizations
|
306 |
-
for fig in visualizations:
|
307 |
-
st.plotly_chart(fig, use_container_width=True)
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
# Function to create TXT file
|
312 |
-
def create_text_report_with_viz_temp(report, conclusion, visualizations):
|
313 |
-
content = f"### Analysis Report\n\n{report}\n\n### Visualizations\n"
|
314 |
-
|
315 |
-
for i, fig in enumerate(visualizations, start=1):
|
316 |
-
fig_title = fig.layout.title.text if fig.layout.title.text else f"Visualization {i}"
|
317 |
-
x_axis = fig.layout.xaxis.title.text if fig.layout.xaxis.title.text else "X-axis"
|
318 |
-
y_axis = fig.layout.yaxis.title.text if fig.layout.yaxis.title.text else "Y-axis"
|
319 |
-
|
320 |
-
content += f"\n{i}. {fig_title}\n"
|
321 |
-
content += f" - X-axis: {x_axis}\n"
|
322 |
-
content += f" - Y-axis: {y_axis}\n"
|
323 |
-
|
324 |
-
if fig.data:
|
325 |
-
trace_types = set(trace.type for trace in fig.data)
|
326 |
-
content += f" - Chart Type(s): {', '.join(trace_types)}\n"
|
327 |
-
else:
|
328 |
-
content += " - No data available in this visualization.\n"
|
329 |
-
|
330 |
-
content += f"\n\n\n{conclusion}"
|
331 |
-
|
332 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".txt", mode='w', encoding='utf-8') as temp_txt:
|
333 |
-
temp_txt.write(content)
|
334 |
-
return temp_txt.name
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
# Function to create PDF with report text and visualizations
|
339 |
-
def create_pdf_report_with_viz(report, conclusion, visualizations):
|
340 |
-
pdf = FPDF()
|
341 |
-
pdf.set_auto_page_break(auto=True, margin=15)
|
342 |
-
pdf.add_page()
|
343 |
-
pdf.set_font("Arial", size=12)
|
344 |
-
|
345 |
-
# Title
|
346 |
-
pdf.set_font("Arial", style="B", size=18)
|
347 |
-
pdf.cell(0, 10, "π Analysis Report", ln=True, align="C")
|
348 |
-
pdf.ln(10)
|
349 |
-
|
350 |
-
# Report Content
|
351 |
-
pdf.set_font("Arial", style="B", size=14)
|
352 |
-
pdf.cell(0, 10, "Analysis", ln=True)
|
353 |
-
pdf.set_font("Arial", size=12)
|
354 |
-
pdf.multi_cell(0, 10, report)
|
355 |
-
|
356 |
-
pdf.ln(10)
|
357 |
-
pdf.set_font("Arial", style="B", size=14)
|
358 |
-
pdf.cell(0, 10, "Conclusion", ln=True)
|
359 |
-
pdf.set_font("Arial", size=12)
|
360 |
-
pdf.multi_cell(0, 10, conclusion)
|
361 |
-
|
362 |
-
# Add Visualizations
|
363 |
-
pdf.add_page()
|
364 |
-
pdf.set_font("Arial", style="B", size=16)
|
365 |
-
pdf.cell(0, 10, "π Visualizations", ln=True)
|
366 |
-
pdf.ln(5)
|
367 |
-
|
368 |
-
with tempfile.TemporaryDirectory() as temp_dir:
|
369 |
-
for i, fig in enumerate(visualizations, start=1):
|
370 |
-
fig_title = fig.layout.title.text if fig.layout.title.text else f"Visualization {i}"
|
371 |
-
x_axis = fig.layout.xaxis.title.text if fig.layout.xaxis.title.text else "X-axis"
|
372 |
-
y_axis = fig.layout.yaxis.title.text if fig.layout.yaxis.title.text else "Y-axis"
|
373 |
-
|
374 |
-
# Save each visualization as a PNG image
|
375 |
-
img_path = os.path.join(temp_dir, f"viz_{i}.png")
|
376 |
-
fig.write_image(img_path)
|
377 |
-
|
378 |
-
# Insert Title and Description
|
379 |
-
pdf.set_font("Arial", style="B", size=14)
|
380 |
-
pdf.multi_cell(0, 10, f"{i}. {fig_title}")
|
381 |
-
pdf.set_font("Arial", size=12)
|
382 |
-
pdf.multi_cell(0, 10, f"X-axis: {x_axis} | Y-axis: {y_axis}")
|
383 |
-
pdf.ln(3)
|
384 |
-
|
385 |
-
# Embed Visualization
|
386 |
-
pdf.image(img_path, w=170)
|
387 |
-
pdf.ln(10)
|
388 |
-
|
389 |
-
# Save PDF
|
390 |
-
temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
|
391 |
-
pdf.output(temp_pdf.name)
|
392 |
-
|
393 |
-
return temp_pdf
|
394 |
-
|
395 |
-
def escape_markdown(text):
|
396 |
-
# Ensure text is a string
|
397 |
-
text = str(text)
|
398 |
-
# Escape Markdown characters: *, _, `, ~
|
399 |
-
escape_chars = r"(\*|_|`|~)"
|
400 |
-
return re.sub(escape_chars, r"\\\1", text)
|
401 |
|
402 |
# SQL-RAG Analysis
|
403 |
if st.session_state.df is not None:
|
@@ -427,7 +100,6 @@ if st.session_state.df is not None:
|
|
427 |
"""Validate the SQL query syntax and structure before execution."""
|
428 |
return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})
|
429 |
|
430 |
-
# Agents for SQL data extraction and analysis
|
431 |
sql_dev = Agent(
|
432 |
role="Senior Database Developer",
|
433 |
goal="Extract data using optimized SQL queries.",
|
@@ -445,19 +117,11 @@ if st.session_state.df is not None:
|
|
445 |
|
446 |
report_writer = Agent(
|
447 |
role="Technical Report Writer",
|
448 |
-
goal="
|
449 |
-
backstory="
|
450 |
llm=llm,
|
451 |
)
|
452 |
|
453 |
-
conclusion_writer = Agent(
|
454 |
-
role="Conclusion Specialist",
|
455 |
-
goal="Summarize findings into a clear and concise 3-5 line Conclusion highlighting only the most important insights.",
|
456 |
-
backstory="An expert in crafting impactful and clear conclusions.",
|
457 |
-
llm=llm,
|
458 |
-
)
|
459 |
-
|
460 |
-
# Define tasks for report and conclusion
|
461 |
extract_data = Task(
|
462 |
description="Extract data based on the query: {query}.",
|
463 |
expected_output="Database results matching the query.",
|
@@ -466,100 +130,56 @@ if st.session_state.df is not None:
|
|
466 |
|
467 |
analyze_data = Task(
|
468 |
description="Analyze the extracted data for query: {query}.",
|
469 |
-
expected_output="
|
470 |
agent=data_analyst,
|
471 |
context=[extract_data],
|
472 |
)
|
473 |
|
474 |
write_report = Task(
|
475 |
-
description="
|
476 |
-
expected_output="Markdown
|
477 |
agent=report_writer,
|
478 |
context=[analyze_data],
|
479 |
)
|
480 |
|
481 |
-
|
482 |
-
description="Summarize the key findings in 3-5 impactful lines, highlighting the maximum, minimum, and average salaries."
|
483 |
-
"Emphasize significant insights on salary distribution and influential compensation trends for strategic decision-making.",
|
484 |
-
expected_output="Markdown-formatted Conclusion section with key insights and statistics.",
|
485 |
-
agent=conclusion_writer,
|
486 |
-
context=[analyze_data],
|
487 |
-
)
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
# Separate Crews for report and conclusion
|
492 |
-
crew_report = Crew(
|
493 |
agents=[sql_dev, data_analyst, report_writer],
|
494 |
tasks=[extract_data, analyze_data, write_report],
|
495 |
process=Process.sequential,
|
496 |
verbose=True,
|
497 |
)
|
498 |
|
499 |
-
|
500 |
-
agents=[data_analyst, conclusion_writer],
|
501 |
-
tasks=[write_conclusion],
|
502 |
-
process=Process.sequential,
|
503 |
-
verbose=True,
|
504 |
-
)
|
505 |
-
|
506 |
-
# Tabs for Query Results and Visualizations
|
507 |
tab1, tab2 = st.tabs(["π Query Insights + Viz", "π Full Data Viz"])
|
508 |
|
509 |
-
# Query Insights + Visualization
|
510 |
with tab1:
|
511 |
query = st.text_area("Enter Query:", value="Provide insights into the salary of a Principal Data Scientist.")
|
512 |
if st.button("Submit Query"):
|
513 |
with st.spinner("Processing query..."):
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
# Step 2: Generate only the concise conclusion
|
519 |
-
conclusion_inputs = {"query": query + " Provide ONLY the most important insights in 3-5 concise lines."}
|
520 |
-
conclusion_result = crew_conclusion.kickoff(inputs=conclusion_inputs)
|
521 |
-
|
522 |
-
# Step 3: Display the report
|
523 |
-
#st.markdown("### Analysis Report:")
|
524 |
-
st.markdown(report_result if report_result else "β οΈ No Report Generated.")
|
525 |
-
|
526 |
-
# Step 4: Generate Visualizations
|
527 |
-
|
528 |
-
|
529 |
-
# Step 5: Insert Visual Insights
|
530 |
-
st.markdown("### Visual Insights")
|
531 |
|
|
|
|
|
|
|
|
|
532 |
|
533 |
-
# Step 6: Display Concise Conclusion
|
534 |
-
#st.markdown("#### Conclusion")
|
535 |
-
|
536 |
-
safe_conclusion = escape_markdown(conclusion_result if conclusion_result else "β οΈ No Conclusion Generated.")
|
537 |
-
st.markdown(safe_conclusion)
|
538 |
-
|
539 |
-
# Full Data Visualization Tab
|
540 |
with tab2:
|
541 |
st.subheader("π Comprehensive Data Visualizations")
|
542 |
-
|
543 |
fig1 = px.histogram(st.session_state.df, x="job_title", title="Job Title Frequency")
|
544 |
st.plotly_chart(fig1)
|
545 |
|
546 |
-
fig2 = px.bar(
|
547 |
-
|
548 |
-
x="experience_level", y="salary_in_usd",
|
549 |
-
title="Average Salary by Experience Level"
|
550 |
-
)
|
551 |
st.plotly_chart(fig2)
|
552 |
|
553 |
-
fig3 = px.box(st.session_state.df, x="employment_type", y="salary_in_usd",
|
554 |
-
title="Salary Distribution by Employment Type")
|
555 |
-
st.plotly_chart(fig3)
|
556 |
-
|
557 |
temp_dir.cleanup()
|
558 |
else:
|
559 |
st.info("Please load a dataset to proceed.")
|
560 |
|
561 |
-
|
562 |
-
# Sidebar Reference
|
563 |
with st.sidebar:
|
564 |
st.header("π Reference:")
|
565 |
st.markdown("[SQL Agents w CrewAI & Llama 3 - Plaban Nayak](https://github.com/plaban1981/Agents/blob/main/SQL_Agents_with_CrewAI_and_Llama_3.ipynb)")
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import sqlite3
|
|
|
|
|
4 |
import os
|
|
|
5 |
import json
|
6 |
from pathlib import Path
|
7 |
import plotly.express as px
|
|
|
30 |
# Model Selection
|
31 |
model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True)
|
32 |
|
33 |
+
|
34 |
# API Key Validation and LLM Initialization
|
35 |
groq_api_key = os.getenv("GROQ_API_KEY")
|
36 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
|
|
51 |
# Initialize session state for data persistence
|
52 |
if "df" not in st.session_state:
|
53 |
st.session_state.df = None
|
|
|
|
|
54 |
|
55 |
# Dataset Input
|
56 |
input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"])
|
|
|
57 |
if input_option == "Use Hugging Face Dataset":
|
58 |
dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries")
|
59 |
if st.button("Load Dataset"):
|
|
|
61 |
with st.spinner("Loading dataset..."):
|
62 |
dataset = load_dataset(dataset_name, split="train")
|
63 |
st.session_state.df = pd.DataFrame(dataset)
|
|
|
64 |
st.success(f"Dataset '{dataset_name}' loaded successfully!")
|
65 |
+
st.dataframe(st.session_state.df.head())
|
66 |
except Exception as e:
|
67 |
st.error(f"Error: {e}")
|
|
|
68 |
elif input_option == "Upload CSV File":
|
69 |
uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"])
|
70 |
if uploaded_file:
|
71 |
+
st.session_state.df = pd.read_csv(uploaded_file)
|
72 |
+
st.success("File uploaded successfully!")
|
73 |
+
st.dataframe(st.session_state.df.head())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
# SQL-RAG Analysis
|
76 |
if st.session_state.df is not None:
|
|
|
100 |
"""Validate the SQL query syntax and structure before execution."""
|
101 |
return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})
|
102 |
|
|
|
103 |
sql_dev = Agent(
|
104 |
role="Senior Database Developer",
|
105 |
goal="Extract data using optimized SQL queries.",
|
|
|
117 |
|
118 |
report_writer = Agent(
|
119 |
role="Technical Report Writer",
|
120 |
+
goal="Summarize the insights into a clear report.",
|
121 |
+
backstory="An expert in summarizing data insights into readable reports.",
|
122 |
llm=llm,
|
123 |
)
|
124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
extract_data = Task(
|
126 |
description="Extract data based on the query: {query}.",
|
127 |
expected_output="Database results matching the query.",
|
|
|
130 |
|
131 |
analyze_data = Task(
|
132 |
description="Analyze the extracted data for query: {query}.",
|
133 |
+
expected_output="Analysis text summarizing findings.",
|
134 |
agent=data_analyst,
|
135 |
context=[extract_data],
|
136 |
)
|
137 |
|
138 |
write_report = Task(
|
139 |
+
description="Summarize the analysis into an executive report.",
|
140 |
+
expected_output="Markdown report of insights.",
|
141 |
agent=report_writer,
|
142 |
context=[analyze_data],
|
143 |
)
|
144 |
|
145 |
+
crew = Crew(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
agents=[sql_dev, data_analyst, report_writer],
|
147 |
tasks=[extract_data, analyze_data, write_report],
|
148 |
process=Process.sequential,
|
149 |
verbose=True,
|
150 |
)
|
151 |
|
152 |
+
# UI: Tabs for Query Results and General Insights
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
tab1, tab2 = st.tabs(["π Query Insights + Viz", "π Full Data Viz"])
|
154 |
|
|
|
155 |
with tab1:
|
156 |
query = st.text_area("Enter Query:", value="Provide insights into the salary of a Principal Data Scientist.")
|
157 |
if st.button("Submit Query"):
|
158 |
with st.spinner("Processing query..."):
|
159 |
+
inputs = {"query": query}
|
160 |
+
result = crew.kickoff(inputs=inputs)
|
161 |
+
st.markdown("### Analysis Report:")
|
162 |
+
st.markdown(result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
|
164 |
+
# Query-Specific Visualization
|
165 |
+
if "salary" in query.lower():
|
166 |
+
fig = px.box(st.session_state.df, x="job_title", y="salary_in_usd", title="Salary Distribution by Job Title")
|
167 |
+
st.plotly_chart(fig)
|
168 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
with tab2:
|
170 |
st.subheader("π Comprehensive Data Visualizations")
|
171 |
+
|
172 |
fig1 = px.histogram(st.session_state.df, x="job_title", title="Job Title Frequency")
|
173 |
st.plotly_chart(fig1)
|
174 |
|
175 |
+
fig2 = px.bar(st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(),
|
176 |
+
x="experience_level", y="salary_in_usd", title="Average Salary by Experience Level")
|
|
|
|
|
|
|
177 |
st.plotly_chart(fig2)
|
178 |
|
|
|
|
|
|
|
|
|
179 |
temp_dir.cleanup()
|
180 |
else:
|
181 |
st.info("Please load a dataset to proceed.")
|
182 |
|
|
|
|
|
183 |
with st.sidebar:
|
184 |
st.header("π Reference:")
|
185 |
st.markdown("[SQL Agents w CrewAI & Llama 3 - Plaban Nayak](https://github.com/plaban1981/Agents/blob/main/SQL_Agents_with_CrewAI_and_Llama_3.ipynb)")
|