Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -25,7 +25,7 @@ from datasets import load_dataset
|
|
25 |
import tempfile
|
26 |
|
27 |
st.title("SQL-RAG Using CrewAI π")
|
28 |
-
st.write("Analyze datasets using natural language queries.")
|
29 |
|
30 |
# Initialize LLM
|
31 |
llm = None
|
@@ -87,152 +87,30 @@ if st.session_state.df is not None and st.session_state.show_preview:
|
|
87 |
st.dataframe(st.session_state.df.head())
|
88 |
|
89 |
|
90 |
-
# Helper Function for Validation
|
91 |
-
def is_valid_suggestion(suggestion):
|
92 |
-
chart_type = suggestion.get("chart_type", "").lower()
|
93 |
|
94 |
-
if chart_type in ["bar", "line", "box", "scatter"]:
|
95 |
-
return all(k in suggestion for k in ["chart_type", "x_axis", "y_axis"])
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
elif chart_type == "heatmap":
|
101 |
-
return all(k in suggestion for k in ["chart_type", "x_axis", "y_axis"])
|
102 |
-
|
103 |
-
else:
|
104 |
-
return False
|
105 |
-
|
106 |
-
def ask_gpt4o_for_visualization(query, df, llm, retries=2):
|
107 |
-
import json
|
108 |
-
|
109 |
-
# Identify numeric and categorical columns
|
110 |
-
numeric_columns = df.select_dtypes(include='number').columns.tolist()
|
111 |
-
categorical_columns = df.select_dtypes(exclude='number').columns.tolist()
|
112 |
-
|
113 |
-
# Prompt with Dataset-Specific, Query-Based Examples
|
114 |
prompt = f"""
|
115 |
-
Analyze the
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
- **Categorical Columns (for X-axis or grouping):** {', '.join(categorical_columns) if categorical_columns else 'None'}
|
120 |
-
Suggest visualizations in this exact JSON format:
|
121 |
[
|
122 |
{{
|
123 |
-
"
|
124 |
-
"x_axis": "
|
125 |
-
"y_axis": "
|
126 |
-
"group_by": "
|
127 |
-
"title": "Title of the chart",
|
128 |
-
"description": "Why this chart is suitable"
|
129 |
}}
|
130 |
]
|
131 |
-
**Query-Based Examples:**
|
132 |
-
- **Query:** "What is the salary distribution across different job titles?"
|
133 |
-
**Suggested Visualization:**
|
134 |
-
{{
|
135 |
-
"chart_type": "box",
|
136 |
-
"x_axis": "job_title",
|
137 |
-
"y_axis": "salary_in_usd",
|
138 |
-
"group_by": "experience_level",
|
139 |
-
"title": "Salary Distribution by Job Title and Experience",
|
140 |
-
"description": "A box plot to show how salaries vary across different job titles and experience levels."
|
141 |
-
}}
|
142 |
-
- **Query:** "Show the average salary by company size and employment type."
|
143 |
-
**Suggested Visualizations:**
|
144 |
-
[
|
145 |
-
{{
|
146 |
-
"chart_type": "bar",
|
147 |
-
"x_axis": "company_size",
|
148 |
-
"y_axis": "salary_in_usd",
|
149 |
-
"group_by": "employment_type",
|
150 |
-
"title": "Average Salary by Company Size and Employment Type",
|
151 |
-
"description": "A grouped bar chart comparing average salaries across company sizes and employment types."
|
152 |
-
}},
|
153 |
-
{{
|
154 |
-
"chart_type": "heatmap",
|
155 |
-
"x_axis": "company_size",
|
156 |
-
"y_axis": "salary_in_usd",
|
157 |
-
"group_by": "employment_type",
|
158 |
-
"title": "Salary Heatmap by Company Size and Employment Type",
|
159 |
-
"description": "A heatmap showing salary concentration across company sizes and employment types."
|
160 |
-
}}
|
161 |
-
]
|
162 |
-
- **Query:** "How has the average salary changed over the years?"
|
163 |
-
**Suggested Visualization:**
|
164 |
-
{{
|
165 |
-
"chart_type": "line",
|
166 |
-
"x_axis": "work_year",
|
167 |
-
"y_axis": "salary_in_usd",
|
168 |
-
"group_by": "experience_level",
|
169 |
-
"title": "Average Salary Trend Over Years",
|
170 |
-
"description": "A line chart showing how the average salary has changed across different experience levels over the years."
|
171 |
-
}}
|
172 |
-
- **Query:** "What is the employee distribution by company location?"
|
173 |
-
**Suggested Visualization:**
|
174 |
-
{{
|
175 |
-
"chart_type": "pie",
|
176 |
-
"x_axis": "company_location",
|
177 |
-
"y_axis": null,
|
178 |
-
"group_by": null,
|
179 |
-
"title": "Employee Distribution by Company Location",
|
180 |
-
"description": "A pie chart showing the distribution of employees across company locations."
|
181 |
-
}}
|
182 |
-
- **Query:** "Is there a relationship between remote work ratio and salary?"
|
183 |
-
**Suggested Visualization:**
|
184 |
-
{{
|
185 |
-
"chart_type": "scatter",
|
186 |
-
"x_axis": "remote_ratio",
|
187 |
-
"y_axis": "salary_in_usd",
|
188 |
-
"group_by": "experience_level",
|
189 |
-
"title": "Remote Work Ratio vs Salary",
|
190 |
-
"description": "A scatter plot to analyze the relationship between remote work ratio and salary."
|
191 |
-
}}
|
192 |
-
- **Query:** "Which job titles have the highest salaries across regions?"
|
193 |
-
**Suggested Visualization:**
|
194 |
-
{{
|
195 |
-
"chart_type": "heatmap",
|
196 |
-
"x_axis": "job_title",
|
197 |
-
"y_axis": "employee_residence",
|
198 |
-
"group_by": null,
|
199 |
-
"title": "Salary Heatmap by Job Title and Region",
|
200 |
-
"description": "A heatmap showing the concentration of high-paying job titles across regions."
|
201 |
-
}}
|
202 |
-
Only suggest visualizations that logically match the query and dataset.
|
203 |
"""
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
if isinstance(suggestions, list):
|
211 |
-
valid_suggestions = [s for s in suggestions if is_valid_suggestion(s)]
|
212 |
-
if valid_suggestions:
|
213 |
-
return valid_suggestions
|
214 |
-
else:
|
215 |
-
st.warning("β οΈ GPT-4o did not suggest valid visualizations.")
|
216 |
-
return None
|
217 |
-
|
218 |
-
elif isinstance(suggestions, dict):
|
219 |
-
if is_valid_suggestion(suggestions):
|
220 |
-
return [suggestions]
|
221 |
-
else:
|
222 |
-
st.warning("β οΈ GPT-4o's suggestion is incomplete or invalid.")
|
223 |
-
return None
|
224 |
-
|
225 |
-
except json.JSONDecodeError:
|
226 |
-
st.warning(f"β οΈ Attempt {attempt + 1}: GPT-4o returned invalid JSON.")
|
227 |
-
except Exception as e:
|
228 |
-
st.error(f"β οΈ Error during GPT-4o call: {e}")
|
229 |
-
|
230 |
-
if attempt < retries:
|
231 |
-
st.info("π Retrying visualization suggestion...")
|
232 |
-
|
233 |
-
st.error("β Failed to generate a valid visualization after multiple attempts.")
|
234 |
-
return None
|
235 |
-
|
236 |
|
237 |
def add_stats_to_figure(fig, df, y_axis, chart_type):
|
238 |
"""
|
@@ -429,6 +307,91 @@ def handle_visualization_suggestions(suggestions, df):
|
|
429 |
st.plotly_chart(fig, use_container_width=True)
|
430 |
|
431 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
432 |
def escape_markdown(text):
|
433 |
# Ensure text is a string
|
434 |
text = str(text)
|
@@ -573,6 +536,28 @@ if st.session_state.df is not None:
|
|
573 |
safe_conclusion = escape_markdown(conclusion_result if conclusion_result else "β οΈ No Conclusion Generated.")
|
574 |
st.markdown(safe_conclusion)
|
575 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
576 |
|
577 |
# Sidebar Reference
|
578 |
with st.sidebar:
|
|
|
25 |
import tempfile
|
26 |
|
27 |
st.title("SQL-RAG Using CrewAI π")
|
28 |
+
st.write("Analyze datasets using natural language queries powered by SQL and CrewAI.")
|
29 |
|
30 |
# Initialize LLM
|
31 |
llm = None
|
|
|
87 |
st.dataframe(st.session_state.df.head())
|
88 |
|
89 |
|
|
|
|
|
|
|
90 |
|
|
|
|
|
91 |
|
92 |
+
def ask_gpt4o_for_visualization(query, df, llm):
|
93 |
+
columns = ', '.join(df.columns)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
prompt = f"""
|
95 |
+
Analyze the query and suggest one or more relevant visualizations.
|
96 |
+
Query: "{query}"
|
97 |
+
Available Columns: {columns}
|
98 |
+
Respond in this JSON format (as a list if multiple suggestions):
|
|
|
|
|
99 |
[
|
100 |
{{
|
101 |
+
"chart_type": "bar/box/line/scatter",
|
102 |
+
"x_axis": "column_name",
|
103 |
+
"y_axis": "column_name",
|
104 |
+
"group_by": "optional_column_name"
|
|
|
|
|
105 |
}}
|
106 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
"""
|
108 |
+
response = llm.generate(prompt)
|
109 |
+
try:
|
110 |
+
return json.loads(response)
|
111 |
+
except json.JSONDecodeError:
|
112 |
+
st.error("β οΈ GPT-4o failed to generate a valid suggestion.")
|
113 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
def add_stats_to_figure(fig, df, y_axis, chart_type):
|
116 |
"""
|
|
|
307 |
st.plotly_chart(fig, use_container_width=True)
|
308 |
|
309 |
|
310 |
+
|
311 |
+
# Function to create TXT file
|
312 |
+
def create_text_report_with_viz_temp(report, conclusion, visualizations):
|
313 |
+
content = f"### Analysis Report\n\n{report}\n\n### Visualizations\n"
|
314 |
+
|
315 |
+
for i, fig in enumerate(visualizations, start=1):
|
316 |
+
fig_title = fig.layout.title.text if fig.layout.title.text else f"Visualization {i}"
|
317 |
+
x_axis = fig.layout.xaxis.title.text if fig.layout.xaxis.title.text else "X-axis"
|
318 |
+
y_axis = fig.layout.yaxis.title.text if fig.layout.yaxis.title.text else "Y-axis"
|
319 |
+
|
320 |
+
content += f"\n{i}. {fig_title}\n"
|
321 |
+
content += f" - X-axis: {x_axis}\n"
|
322 |
+
content += f" - Y-axis: {y_axis}\n"
|
323 |
+
|
324 |
+
if fig.data:
|
325 |
+
trace_types = set(trace.type for trace in fig.data)
|
326 |
+
content += f" - Chart Type(s): {', '.join(trace_types)}\n"
|
327 |
+
else:
|
328 |
+
content += " - No data available in this visualization.\n"
|
329 |
+
|
330 |
+
content += f"\n\n\n{conclusion}"
|
331 |
+
|
332 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".txt", mode='w', encoding='utf-8') as temp_txt:
|
333 |
+
temp_txt.write(content)
|
334 |
+
return temp_txt.name
|
335 |
+
|
336 |
+
|
337 |
+
|
338 |
+
# Function to create PDF with report text and visualizations
|
339 |
+
def create_pdf_report_with_viz(report, conclusion, visualizations):
|
340 |
+
pdf = FPDF()
|
341 |
+
pdf.set_auto_page_break(auto=True, margin=15)
|
342 |
+
pdf.add_page()
|
343 |
+
pdf.set_font("Arial", size=12)
|
344 |
+
|
345 |
+
# Title
|
346 |
+
pdf.set_font("Arial", style="B", size=18)
|
347 |
+
pdf.cell(0, 10, "π Analysis Report", ln=True, align="C")
|
348 |
+
pdf.ln(10)
|
349 |
+
|
350 |
+
# Report Content
|
351 |
+
pdf.set_font("Arial", style="B", size=14)
|
352 |
+
pdf.cell(0, 10, "Analysis", ln=True)
|
353 |
+
pdf.set_font("Arial", size=12)
|
354 |
+
pdf.multi_cell(0, 10, report)
|
355 |
+
|
356 |
+
pdf.ln(10)
|
357 |
+
pdf.set_font("Arial", style="B", size=14)
|
358 |
+
pdf.cell(0, 10, "Conclusion", ln=True)
|
359 |
+
pdf.set_font("Arial", size=12)
|
360 |
+
pdf.multi_cell(0, 10, conclusion)
|
361 |
+
|
362 |
+
# Add Visualizations
|
363 |
+
pdf.add_page()
|
364 |
+
pdf.set_font("Arial", style="B", size=16)
|
365 |
+
pdf.cell(0, 10, "π Visualizations", ln=True)
|
366 |
+
pdf.ln(5)
|
367 |
+
|
368 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
369 |
+
for i, fig in enumerate(visualizations, start=1):
|
370 |
+
fig_title = fig.layout.title.text if fig.layout.title.text else f"Visualization {i}"
|
371 |
+
x_axis = fig.layout.xaxis.title.text if fig.layout.xaxis.title.text else "X-axis"
|
372 |
+
y_axis = fig.layout.yaxis.title.text if fig.layout.yaxis.title.text else "Y-axis"
|
373 |
+
|
374 |
+
# Save each visualization as a PNG image
|
375 |
+
img_path = os.path.join(temp_dir, f"viz_{i}.png")
|
376 |
+
fig.write_image(img_path)
|
377 |
+
|
378 |
+
# Insert Title and Description
|
379 |
+
pdf.set_font("Arial", style="B", size=14)
|
380 |
+
pdf.multi_cell(0, 10, f"{i}. {fig_title}")
|
381 |
+
pdf.set_font("Arial", size=12)
|
382 |
+
pdf.multi_cell(0, 10, f"X-axis: {x_axis} | Y-axis: {y_axis}")
|
383 |
+
pdf.ln(3)
|
384 |
+
|
385 |
+
# Embed Visualization
|
386 |
+
pdf.image(img_path, w=170)
|
387 |
+
pdf.ln(10)
|
388 |
+
|
389 |
+
# Save PDF
|
390 |
+
temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
|
391 |
+
pdf.output(temp_pdf.name)
|
392 |
+
|
393 |
+
return temp_pdf
|
394 |
+
|
395 |
def escape_markdown(text):
|
396 |
# Ensure text is a string
|
397 |
text = str(text)
|
|
|
536 |
safe_conclusion = escape_markdown(conclusion_result if conclusion_result else "β οΈ No Conclusion Generated.")
|
537 |
st.markdown(safe_conclusion)
|
538 |
|
539 |
+
# Full Data Visualization Tab
|
540 |
+
with tab2:
|
541 |
+
st.subheader("π Comprehensive Data Visualizations")
|
542 |
+
|
543 |
+
fig1 = px.histogram(st.session_state.df, x="job_title", title="Job Title Frequency")
|
544 |
+
st.plotly_chart(fig1)
|
545 |
+
|
546 |
+
fig2 = px.bar(
|
547 |
+
st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(),
|
548 |
+
x="experience_level", y="salary_in_usd",
|
549 |
+
title="Average Salary by Experience Level"
|
550 |
+
)
|
551 |
+
st.plotly_chart(fig2)
|
552 |
+
|
553 |
+
fig3 = px.box(st.session_state.df, x="employment_type", y="salary_in_usd",
|
554 |
+
title="Salary Distribution by Employment Type")
|
555 |
+
st.plotly_chart(fig3)
|
556 |
+
|
557 |
+
temp_dir.cleanup()
|
558 |
+
else:
|
559 |
+
st.info("Please load a dataset to proceed.")
|
560 |
+
|
561 |
|
562 |
# Sidebar Reference
|
563 |
with st.sidebar:
|