File size: 10,160 Bytes
4ae7ed4
 
2ac9a74
4ae7ed4
 
2ac9a74
2bfda0e
4ae7ed4
2ac9a74
6548944
4ae7ed4
f12166f
2ac9a74
 
 
 
 
 
 
 
77389d5
4ae7ed4
 
e003b30
 
4ae7ed4
e1b05e1
e003b30
4ae7ed4
e003b30
 
4ae7ed4
e003b30
 
 
4ae7ed4
e003b30
 
 
 
 
 
 
 
 
 
 
 
9bd334d
e1b05e1
 
 
592efed
 
e1b05e1
5cc7611
7752a10
b62fcd0
7752a10
 
 
 
5cc7611
7752a10
e1b05e1
592efed
7752a10
 
5cc7611
b62fcd0
e1b05e1
7752a10
469ba8d
b62fcd0
 
592efed
b62fcd0
 
 
 
592efed
 
b62fcd0
 
 
7752a10
e1b05e1
9bd334d
 
 
e1b05e1
9bd334d
 
 
 
5cc7611
9bd334d
 
 
 
cbd7b69
9bd334d
 
 
 
cbd7b69
9bd334d
 
 
 
cbd7b69
9bd334d
 
3a46f4e
9bd334d
5cc7611
 
 
9bd334d
 
 
 
3a46f4e
9bd334d
5cc7611
 
 
9bd334d
 
 
3a46f4e
9bd334d
5cc7611
3a46f4e
 
9bd334d
 
 
3a46f4e
 
 
 
 
 
 
 
 
9bd334d
5cc7611
 
9bd334d
 
 
 
5cc7611
3a46f4e
9bd334d
 
 
 
 
3a46f4e
 
9bd334d
 
 
 
3a46f4e
 
 
 
 
 
 
 
 
9bd334d
 
 
2b71376
9bd334d
 
3a46f4e
 
 
 
 
 
 
333c72e
cbd7b69
 
333c72e
cbd7b69
39a319b
b0659f7
 
3a46f4e
 
 
5337f64
99b99c9
3a46f4e
 
7a5d55f
b0659f7
 
5337f64
2dbbcbf
 
10f3dc1
 
 
2dbbcbf
7a5d55f
 
 
 
 
 
2dbbcbf
7a5d55f
 
 
2dbbcbf
3a46f4e
5337f64
 
 
 
 
 
 
 
 
 
b0659f7
751c05a
cbd7b69
 
b0659f7
cbd7b69
 
 
b0659f7
 
 
 
 
cbd7b69
 
6925732
 
 
 
cbd7b69
 
 
39e581e
3a46f4e
6925732
39e581e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import streamlit as st
import pandas as pd
import sqlite3
import os
import json
from pathlib import Path
import plotly.express as px
from datetime import datetime, timezone
from crewai import Agent, Crew, Process, Task
from crewai.tools import tool
from langchain_groq import ChatGroq
from langchain_openai import ChatOpenAI
from langchain.schema.output import LLMResult
from langchain_community.tools.sql_database.tool import (
    InfoSQLDatabaseTool,
    ListSQLDatabaseTool,
    QuerySQLCheckerTool,
    QuerySQLDataBaseTool,
)
from langchain_community.utilities.sql_database import SQLDatabase
from datasets import load_dataset
import tempfile

st.title("SQL-RAG Using CrewAI πŸš€")
st.write("Analyze datasets using natural language queries powered by SQL and CrewAI.")

# Initialize LLM
llm = None

# Model Selection
model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True)

# API Key Validation and LLM Initialization
groq_api_key = os.getenv("GROQ_API_KEY")
openai_api_key = os.getenv("OPENAI_API_KEY")

if model_choice == "llama-3.3-70b":
    if not groq_api_key:
        st.error("Groq API key is missing. Please set the GROQ_API_KEY environment variable.")
        llm = None
    else:
        llm = ChatGroq(groq_api_key=groq_api_key, model="groq/llama-3.3-70b-versatile")
elif model_choice == "GPT-4o":
    if not openai_api_key:
        st.error("OpenAI API key is missing. Please set the OPENAI_API_KEY environment variable.")
        llm = None
    else:
        llm = ChatOpenAI(api_key=openai_api_key, model="gpt-4o")

# Initialize session state for data persistence
if "df" not in st.session_state:
    st.session_state.df = None
if "show_preview" not in st.session_state:
    st.session_state.show_preview = False  

# Dataset Input
input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"])

if input_option == "Use Hugging Face Dataset":
    dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries")
    if st.button("Load Dataset"):
        try:
            with st.spinner("Loading dataset..."):
                dataset = load_dataset(dataset_name, split="train")
                st.session_state.df = pd.DataFrame(dataset)
                st.session_state.show_preview = True  # Show preview after loading
                st.success(f"Dataset '{dataset_name}' loaded successfully!")
        except Exception as e:
            st.error(f"Error: {e}")

elif input_option == "Upload CSV File":
    uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"])
    if uploaded_file:
        try:
            st.session_state.df = pd.read_csv(uploaded_file)
            st.session_state.show_preview = True  # Show preview after loading
            st.success("File uploaded successfully!")
        except Exception as e:
            st.error(f"Error loading file: {e}")

# Show Dataset Preview Only After Loading
if st.session_state.df is not None and st.session_state.show_preview:
    st.subheader("πŸ“‚ Dataset Preview")
    st.dataframe(st.session_state.df.head())

# SQL-RAG Analysis
if st.session_state.df is not None:
    temp_dir = tempfile.TemporaryDirectory()
    db_path = os.path.join(temp_dir.name, "data.db")
    connection = sqlite3.connect(db_path)
    st.session_state.df.to_sql("salaries", connection, if_exists="replace", index=False)
    db = SQLDatabase.from_uri(f"sqlite:///{db_path}")

    @tool("list_tables")
    def list_tables() -> str:
        """List all tables in the database."""
        return ListSQLDatabaseTool(db=db).invoke("")

    @tool("tables_schema")
    def tables_schema(tables: str) -> str:
        """Get the schema and sample rows for the specified tables."""
        return InfoSQLDatabaseTool(db=db).invoke(tables)

    @tool("execute_sql")
    def execute_sql(sql_query: str) -> str:
        """Execute a SQL query against the database and return the results."""
        return QuerySQLDataBaseTool(db=db).invoke(sql_query)

    @tool("check_sql")
    def check_sql(sql_query: str) -> str:
        """Validate the SQL query syntax and structure before execution."""
        return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})

    # Agent for SQL data extraction
    sql_dev = Agent(
        role="Senior Database Developer",
        goal="Extract data using optimized SQL queries.",
        backstory="An expert in writing optimized SQL queries for complex databases.",
        llm=llm,
        tools=[list_tables, tables_schema, execute_sql, check_sql],
    )

    # Agent for data analysis
    data_analyst = Agent(
        role="Senior Data Analyst",
        goal="Analyze the data and produce insights.",
        backstory="A seasoned analyst who identifies trends and patterns in datasets.",
        llm=llm,
    )

    # Agent for generating the main report (without Conclusion)
    report_writer = Agent(
        role="Technical Report Writer",
        goal="Write a clear, structured report containing ONLY Key Insights and Analysis. NO Introduction, Summary, or Conclusion.",
        backstory="An expert in crafting data-driven reports with clear insights.",
        llm=llm,
    )

    # New Agent for generating ONLY the Conclusion
    conclusion_writer = Agent(
        role="Conclusion Specialist",
        goal="Summarize findings into a clear and concise Conclusion section.",
        backstory="An expert in crafting well-structured and insightful conclusions.",
        llm=llm,
    )

    # Tasks for each agent
    extract_data = Task(
        description="Extract data based on the query: {query}.",
        expected_output="Database results matching the query.",
        agent=sql_dev,
    )

    analyze_data = Task(
        description="Analyze the extracted data for query: {query}.",
        expected_output="Provide ONLY Key Insights and Analysis. Exclude Introduction and Conclusion.",
        agent=data_analyst,
        context=[extract_data],
    )

    write_report = Task(
        description="Write the report with ONLY Key Insights and Analysis. DO NOT include Introduction or Conclusion.",
        expected_output="Markdown report excluding Introduction and Conclusion.",
        agent=report_writer,
        context=[analyze_data],
    )

    write_conclusion = Task(
        description="Summarize the findings into a concise Conclusion.",
        expected_output="Markdown-formatted Conclusion section.",
        agent=conclusion_writer,
        context=[analyze_data],
    )

    # Crew with separate tasks for report and conclusion
    crew_report = Crew(
        agents=[sql_dev, data_analyst, report_writer],
        tasks=[extract_data, analyze_data, write_report],
        process=Process.sequential,
        verbose=True,
    )

    crew_conclusion = Crew(
        agents=[data_analyst, conclusion_writer],
        tasks=[write_conclusion],
        process=Process.sequential,
        verbose=True,
    )

    # Tabs for Query Results and General Insights
    tab1, tab2 = st.tabs(["πŸ” Query Insights + Viz", "πŸ“Š Full Data Viz"])

    # Tab 1: Query-Insights + Visualization
    with tab1:
        query = st.text_area("Enter Query:", value="Provide insights into the salary of a Principal Data Scientist.")
        if st.button("Submit Query"):
            with st.spinner("Processing query..."):
                # Step 1: Generate the main report (without Conclusion)
                report_inputs = {"query": query}
                report_result = crew_report.kickoff(inputs=report_inputs)

                # Step 2: Generate ONLY the Conclusion
                conclusion_inputs = {"query": query}
                conclusion_result = crew_conclusion.kickoff(inputs=conclusion_inputs)

                st.markdown("### Analysis Report:")

                # Step 3: Generate relevant visualizations
                visualizations = []

                fig_salary = px.box(st.session_state.df, x="job_title", y="salary_in_usd",
                                    title="Salary Distribution by Job Title")
                visualizations.append(fig_salary)

                fig_experience = px.bar(
                    st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(),
                    x="experience_level", y="salary_in_usd",
                    title="Average Salary by Experience Level"
                )
                visualizations.append(fig_experience)

                fig_employment = px.box(st.session_state.df, x="employment_type", y="salary_in_usd",
                                        title="Salary Distribution by Employment Type")
                visualizations.append(fig_employment)

                # Step 4: Display the main report
                st.markdown(report_result)

                # Step 5: Insert Visual Insights
                st.markdown("## πŸ“Š Visual Insights")
                for fig in visualizations:
                    st.plotly_chart(fig, use_container_width=True)

                # Step 6: Append the Conclusion
                st.markdown("## Conclusion")
                st.markdown(conclusion_result)

    # Tab 2: Full Data Visualization
    with tab2:
        st.subheader("πŸ“Š Comprehensive Data Visualizations")

        fig1 = px.histogram(st.session_state.df, x="job_title", title="Job Title Frequency")
        st.plotly_chart(fig1)

        fig2 = px.bar(
            st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(),
            x="experience_level", y="salary_in_usd",
            title="Average Salary by Experience Level"
        )
        st.plotly_chart(fig2)

        fig3 = px.box(st.session_state.df, x="employment_type", y="salary_in_usd",
                      title="Salary Distribution by Employment Type")
        st.plotly_chart(fig3)

    temp_dir.cleanup()
else:
    st.info("Please load a dataset to proceed.")


# Sidebar Reference
with st.sidebar:
    st.header("πŸ“š Reference:")
    st.markdown("[SQL Agents w CrewAI & Llama 3 - Plaban Nayak](https://github.com/plaban1981/Agents/blob/main/SQL_Agents_with_CrewAI_and_Llama_3.ipynb)")