DontPlanToEnd commited on
Commit
d746c5e
β€’
1 Parent(s): 36beb49

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -15
app.py CHANGED
@@ -62,7 +62,7 @@ def load_leaderboard_data(csv_file_path):
62
  return pd.DataFrame(columns=UGI_COLS + WRITING_STYLE_COLS + ANIME_RATING_COLS)
63
 
64
  # Update the leaderboard table based on the search query and parameter range filters
65
- def update_table(df: pd.DataFrame, query: str, param_ranges: list, w10_range: list, columns: list) -> pd.DataFrame:
66
  filtered_df = df.copy()
67
  if param_ranges:
68
  param_mask = pd.Series(False, index=filtered_df.index)
@@ -86,7 +86,7 @@ def update_table(df: pd.DataFrame, query: str, param_ranges: list, w10_range: li
86
  filtered_df = filtered_df[param_mask]
87
 
88
  # Apply W/10 filter
89
- filtered_df = filtered_df[(filtered_df['W/10 πŸ‘'] >= w10_range[0]) & (filtered_df['W/10 πŸ‘'] <= w10_range[1])]
90
 
91
  if query:
92
  filtered_df = filtered_df[filtered_df['Model'].str.contains(query, case=False, na=False)]
@@ -124,13 +124,21 @@ with GraInter:
124
  elem_id="filter-columns-size",
125
  )
126
  with gr.Row():
127
- w10_slider = gr.RangeSlider(
128
  minimum=0,
129
  maximum=10,
130
- value=[0, 10],
131
  step=0.1,
132
- label="W/10 Range",
133
- elem_id="w10-slider"
 
 
 
 
 
 
 
 
134
  )
135
 
136
  # Load the initial leaderboard data
@@ -251,36 +259,42 @@ with GraInter:
251
  **NA:** When models either reply with one number for every anime, give ratings not between 1 and 10, or don't give every anime in the list a rating.
252
  """)
253
 
254
- def update_all_tables(query, param_ranges, w10_range):
255
- ugi_table = update_table(leaderboard_df, query, param_ranges, w10_range, UGI_COLS)
256
 
257
  ws_df = leaderboard_df.sort_values(by='Reg+MyScore πŸ†', ascending=False)
258
- ws_table = update_table(ws_df, query, param_ranges, w10_range, WRITING_STYLE_COLS)
259
 
260
  arp_df = leaderboard_df.sort_values(by='Score πŸ†', ascending=False)
261
  arp_df_na = arp_df[arp_df[['Dif', 'Cor']].isna().any(axis=1)]
262
  arp_df = arp_df[~arp_df[['Dif', 'Cor']].isna().any(axis=1)]
263
 
264
- arp_table = update_table(arp_df, query, param_ranges, w10_range, ANIME_RATING_COLS)
265
- arp_na_table = update_table(arp_df_na, query, param_ranges, w10_range, ANIME_RATING_COLS).fillna('NA')
266
 
267
  return ugi_table, ws_table, arp_table, arp_na_table
268
 
269
  search_bar.change(
270
  fn=update_all_tables,
271
- inputs=[search_bar, filter_columns_size, w10_slider],
272
  outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
273
  )
274
 
275
  filter_columns_size.change(
276
  fn=update_all_tables,
277
- inputs=[search_bar, filter_columns_size, w10_slider],
278
  outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
279
  )
280
 
281
- w10_slider.change(
 
 
 
 
 
 
282
  fn=update_all_tables,
283
- inputs=[search_bar, filter_columns_size, w10_slider],
284
  outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
285
  )
286
 
 
62
  return pd.DataFrame(columns=UGI_COLS + WRITING_STYLE_COLS + ANIME_RATING_COLS)
63
 
64
  # Update the leaderboard table based on the search query and parameter range filters
65
+ def update_table(df: pd.DataFrame, query: str, param_ranges: list, w10_min: float, w10_max: float, columns: list) -> pd.DataFrame:
66
  filtered_df = df.copy()
67
  if param_ranges:
68
  param_mask = pd.Series(False, index=filtered_df.index)
 
86
  filtered_df = filtered_df[param_mask]
87
 
88
  # Apply W/10 filter
89
+ filtered_df = filtered_df[(filtered_df['W/10 πŸ‘'] >= w10_min) & (filtered_df['W/10 πŸ‘'] <= w10_max)]
90
 
91
  if query:
92
  filtered_df = filtered_df[filtered_df['Model'].str.contains(query, case=False, na=False)]
 
124
  elem_id="filter-columns-size",
125
  )
126
  with gr.Row():
127
+ w10_min = gr.Slider(
128
  minimum=0,
129
  maximum=10,
130
+ value=0,
131
  step=0.1,
132
+ label="W/10 Minimum",
133
+ elem_id="w10-min-slider"
134
+ )
135
+ w10_max = gr.Slider(
136
+ minimum=0,
137
+ maximum=10,
138
+ value=10,
139
+ step=0.1,
140
+ label="W/10 Maximum",
141
+ elem_id="w10-max-slider"
142
  )
143
 
144
  # Load the initial leaderboard data
 
259
  **NA:** When models either reply with one number for every anime, give ratings not between 1 and 10, or don't give every anime in the list a rating.
260
  """)
261
 
262
+ def update_all_tables(query, param_ranges, w10_min, w10_max):
263
+ ugi_table = update_table(leaderboard_df, query, param_ranges, w10_min, w10_max, UGI_COLS)
264
 
265
  ws_df = leaderboard_df.sort_values(by='Reg+MyScore πŸ†', ascending=False)
266
+ ws_table = update_table(ws_df, query, param_ranges, w10_min, w10_max, WRITING_STYLE_COLS)
267
 
268
  arp_df = leaderboard_df.sort_values(by='Score πŸ†', ascending=False)
269
  arp_df_na = arp_df[arp_df[['Dif', 'Cor']].isna().any(axis=1)]
270
  arp_df = arp_df[~arp_df[['Dif', 'Cor']].isna().any(axis=1)]
271
 
272
+ arp_table = update_table(arp_df, query, param_ranges, w10_min, w10_max, ANIME_RATING_COLS)
273
+ arp_na_table = update_table(arp_df_na, query, param_ranges, w10_min, w10_max, ANIME_RATING_COLS).fillna('NA')
274
 
275
  return ugi_table, ws_table, arp_table, arp_na_table
276
 
277
  search_bar.change(
278
  fn=update_all_tables,
279
+ inputs=[search_bar, filter_columns_size, w10_min, w10_max],
280
  outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
281
  )
282
 
283
  filter_columns_size.change(
284
  fn=update_all_tables,
285
+ inputs=[search_bar, filter_columns_size, w10_min, w10_max],
286
  outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
287
  )
288
 
289
+ w10_min.change(
290
+ fn=update_all_tables,
291
+ inputs=[search_bar, filter_columns_size, w10_min, w10_max],
292
+ outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
293
+ )
294
+
295
+ w10_max.change(
296
  fn=update_all_tables,
297
+ inputs=[search_bar, filter_columns_size, w10_min, w10_max],
298
  outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
299
  )
300