DontPlanToEnd commited on
Commit
36beb49
β€’
1 Parent(s): 97f31a0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -8
app.py CHANGED
@@ -62,7 +62,7 @@ def load_leaderboard_data(csv_file_path):
62
  return pd.DataFrame(columns=UGI_COLS + WRITING_STYLE_COLS + ANIME_RATING_COLS)
63
 
64
  # Update the leaderboard table based on the search query and parameter range filters
65
- def update_table(df: pd.DataFrame, query: str, param_ranges: list, columns: list) -> pd.DataFrame:
66
  filtered_df = df.copy()
67
  if param_ranges:
68
  param_mask = pd.Series(False, index=filtered_df.index)
@@ -85,6 +85,9 @@ def update_table(df: pd.DataFrame, query: str, param_ranges: list, columns: list
85
  param_mask |= (filtered_df['Params'] >= 65)
86
  filtered_df = filtered_df[param_mask]
87
 
 
 
 
88
  if query:
89
  filtered_df = filtered_df[filtered_df['Model'].str.contains(query, case=False, na=False)]
90
 
@@ -120,6 +123,15 @@ with GraInter:
120
  interactive=True,
121
  elem_id="filter-columns-size",
122
  )
 
 
 
 
 
 
 
 
 
123
 
124
  # Load the initial leaderboard data
125
  leaderboard_df = load_leaderboard_data("ugi-leaderboard-data.csv")
@@ -239,30 +251,36 @@ with GraInter:
239
  **NA:** When models either reply with one number for every anime, give ratings not between 1 and 10, or don't give every anime in the list a rating.
240
  """)
241
 
242
- def update_all_tables(query, param_ranges):
243
- ugi_table = update_table(leaderboard_df, query, param_ranges, UGI_COLS)
244
 
245
  ws_df = leaderboard_df.sort_values(by='Reg+MyScore πŸ†', ascending=False)
246
- ws_table = update_table(ws_df, query, param_ranges, WRITING_STYLE_COLS)
247
 
248
  arp_df = leaderboard_df.sort_values(by='Score πŸ†', ascending=False)
249
  arp_df_na = arp_df[arp_df[['Dif', 'Cor']].isna().any(axis=1)]
250
  arp_df = arp_df[~arp_df[['Dif', 'Cor']].isna().any(axis=1)]
251
 
252
- arp_table = update_table(arp_df, query, param_ranges, ANIME_RATING_COLS)
253
- arp_na_table = update_table(arp_df_na, query, param_ranges, ANIME_RATING_COLS).fillna('NA')
254
 
255
  return ugi_table, ws_table, arp_table, arp_na_table
256
 
257
  search_bar.change(
258
  fn=update_all_tables,
259
- inputs=[search_bar, filter_columns_size],
260
  outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
261
  )
262
 
263
  filter_columns_size.change(
264
  fn=update_all_tables,
265
- inputs=[search_bar, filter_columns_size],
 
 
 
 
 
 
266
  outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
267
  )
268
 
 
62
  return pd.DataFrame(columns=UGI_COLS + WRITING_STYLE_COLS + ANIME_RATING_COLS)
63
 
64
  # Update the leaderboard table based on the search query and parameter range filters
65
+ def update_table(df: pd.DataFrame, query: str, param_ranges: list, w10_range: list, columns: list) -> pd.DataFrame:
66
  filtered_df = df.copy()
67
  if param_ranges:
68
  param_mask = pd.Series(False, index=filtered_df.index)
 
85
  param_mask |= (filtered_df['Params'] >= 65)
86
  filtered_df = filtered_df[param_mask]
87
 
88
+ # Apply W/10 filter
89
+ filtered_df = filtered_df[(filtered_df['W/10 πŸ‘'] >= w10_range[0]) & (filtered_df['W/10 πŸ‘'] <= w10_range[1])]
90
+
91
  if query:
92
  filtered_df = filtered_df[filtered_df['Model'].str.contains(query, case=False, na=False)]
93
 
 
123
  interactive=True,
124
  elem_id="filter-columns-size",
125
  )
126
+ with gr.Row():
127
+ w10_slider = gr.RangeSlider(
128
+ minimum=0,
129
+ maximum=10,
130
+ value=[0, 10],
131
+ step=0.1,
132
+ label="W/10 Range",
133
+ elem_id="w10-slider"
134
+ )
135
 
136
  # Load the initial leaderboard data
137
  leaderboard_df = load_leaderboard_data("ugi-leaderboard-data.csv")
 
251
  **NA:** When models either reply with one number for every anime, give ratings not between 1 and 10, or don't give every anime in the list a rating.
252
  """)
253
 
254
+ def update_all_tables(query, param_ranges, w10_range):
255
+ ugi_table = update_table(leaderboard_df, query, param_ranges, w10_range, UGI_COLS)
256
 
257
  ws_df = leaderboard_df.sort_values(by='Reg+MyScore πŸ†', ascending=False)
258
+ ws_table = update_table(ws_df, query, param_ranges, w10_range, WRITING_STYLE_COLS)
259
 
260
  arp_df = leaderboard_df.sort_values(by='Score πŸ†', ascending=False)
261
  arp_df_na = arp_df[arp_df[['Dif', 'Cor']].isna().any(axis=1)]
262
  arp_df = arp_df[~arp_df[['Dif', 'Cor']].isna().any(axis=1)]
263
 
264
+ arp_table = update_table(arp_df, query, param_ranges, w10_range, ANIME_RATING_COLS)
265
+ arp_na_table = update_table(arp_df_na, query, param_ranges, w10_range, ANIME_RATING_COLS).fillna('NA')
266
 
267
  return ugi_table, ws_table, arp_table, arp_na_table
268
 
269
  search_bar.change(
270
  fn=update_all_tables,
271
+ inputs=[search_bar, filter_columns_size, w10_slider],
272
  outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
273
  )
274
 
275
  filter_columns_size.change(
276
  fn=update_all_tables,
277
+ inputs=[search_bar, filter_columns_size, w10_slider],
278
+ outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
279
+ )
280
+
281
+ w10_slider.change(
282
+ fn=update_all_tables,
283
+ inputs=[search_bar, filter_columns_size, w10_slider],
284
  outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
285
  )
286