Spaces:
Running
Running
import requests | |
from bs4 import BeautifulSoup | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
import gradio as gr | |
import io | |
import os | |
import base64 | |
import zipfile | |
from PIL import Image | |
from io import BytesIO | |
import tempfile | |
import sys | |
# -------------------------------------------------------------------- | |
# PART 1: TINY DATA + PLOTS | |
# -------------------------------------------------------------------- | |
# This dataframe is your “tiny” version of model performance data. | |
# Used for plotting & demonstration in the Gradio app. | |
data_full = [ | |
['CultriX/Qwen2.5-14B-SLERPv7', 'https://huggingface.co./CultriX/Qwen2.5-14B-SLERPv7', 0.7205, 0.8272, 0.7541, 0.6581, 0.5, 0.729], | |
['djuna/Q2.5-Veltha-14B-0.5', 'https://huggingface.co./djuna/Q2.5-Veltha-14B-0.5', 0.7492, 0.8386, 0.7305, 0.598, 0.43, 0.7817], | |
['CultriX/Qwen2.5-14B-FinalMerge', 'https://huggingface.co./CultriX/Qwen2.5-14B-FinalMerge', 0.7248, 0.8277, 0.7113, 0.7052, 0.57, 0.7001], | |
['CultriX/Qwen2.5-14B-MultiCultyv2', 'https://huggingface.co./CultriX/Qwen2.5-14B-MultiCultyv2', 0.7295, 0.8359, 0.7363, 0.5767, 0.44, 0.7316], | |
['CultriX/Qwen2.5-14B-Brocav7', 'https://huggingface.co./CultriX/Qwen2.5-14B-Brocav7', 0.7445, 0.8353, 0.7508, 0.6292, 0.46, 0.7629], | |
['CultriX/Qwen2.5-14B-Broca', 'https://huggingface.co./CultriX/Qwen2.5-14B-Broca', 0.7456, 0.8352, 0.748, 0.6034, 0.44, 0.7716], | |
['CultriX/Qwen2.5-14B-Brocav3', 'https://huggingface.co./CultriX/Qwen2.5-14B-Brocav3', 0.7395, 0.8388, 0.7393, 0.6405, 0.47, 0.7659], | |
['CultriX/Qwen2.5-14B-Brocav4', 'https://huggingface.co./CultriX/Qwen2.5-14B-Brocav4', 0.7432, 0.8377, 0.7444, 0.6277, 0.48, 0.758], | |
['CultriX/Qwen2.5-14B-Brocav2', 'https://huggingface.co./CultriX/Qwen2.5-14B-Brocav2', 0.7492, 0.8302, 0.7508, 0.6377, 0.51, 0.7478], | |
['CultriX/Qwen2.5-14B-Brocav5', 'https://huggingface.co./CultriX/Qwen2.5-14B-Brocav5', 0.7445, 0.8313, 0.7547, 0.6376, 0.5, 0.7304], | |
['CultriX/Qwen2.5-14B-Brocav6', 'https://huggingface.co./CultriX/Qwen2.5-14B-Brocav6', 0.7179, 0.8354, 0.7531, 0.6378, 0.49, 0.7524], | |
['CultriX/Qwenfinity-2.5-14B', 'https://huggingface.co./CultriX/Qwenfinity-2.5-14B', 0.7347, 0.8254, 0.7279, 0.7267, 0.56, 0.697], | |
['CultriX/Qwen2.5-14B-Emergedv2', 'https://huggingface.co./CultriX/Qwen2.5-14B-Emergedv2', 0.7137, 0.8335, 0.7363, 0.5836, 0.44, 0.7344], | |
['CultriX/Qwen2.5-14B-Unity', 'https://huggingface.co./CultriX/Qwen2.5-14B-Unity', 0.7063, 0.8343, 0.7423, 0.682, 0.57, 0.7498], | |
['CultriX/Qwen2.5-14B-MultiCultyv3', 'https://huggingface.co./CultriX/Qwen2.5-14B-MultiCultyv3', 0.7132, 0.8216, 0.7395, 0.6792, 0.55, 0.712], | |
['CultriX/Qwen2.5-14B-Emergedv3', 'https://huggingface.co./CultriX/Qwen2.5-14B-Emergedv3', 0.7436, 0.8312, 0.7519, 0.6585, 0.55, 0.7068], | |
['CultriX/SeQwence-14Bv1', 'https://huggingface.co./CultriX/SeQwence-14Bv1', 0.7278, 0.841, 0.7541, 0.6816, 0.52, 0.7539], | |
['CultriX/Qwen2.5-14B-Wernickev2', 'https://huggingface.co./CultriX/Qwen2.5-14B-Wernickev2', 0.7391, 0.8168, 0.7273, 0.622, 0.45, 0.7572], | |
['CultriX/Qwen2.5-14B-Wernickev3', 'https://huggingface.co./CultriX/Qwen2.5-14B-Wernickev3', 0.7357, 0.8148, 0.7245, 0.7023, 0.55, 0.7869], | |
['CultriX/Qwen2.5-14B-Wernickev4', 'https://huggingface.co./CultriX/Qwen2.5-14B-Wernickev4', 0.7355, 0.829, 0.7497, 0.6306, 0.48, 0.7635], | |
['CultriX/SeQwential-14B-v1', 'https://huggingface.co./CultriX/SeQwential-14B-v1', 0.7355, 0.8205, 0.7549, 0.6367, 0.48, 0.7626], | |
['CultriX/Qwen2.5-14B-Wernickev5', 'https://huggingface.co./CultriX/Qwen2.5-14B-Wernickev5', 0.7224, 0.8272, 0.7541, 0.679, 0.51, 0.7578], | |
['CultriX/Qwen2.5-14B-Wernickev6', 'https://huggingface.co./CultriX/Qwen2.5-14B-Wernickev6', 0.6994, 0.7549, 0.5816, 0.6991, 0.58, 0.7267], | |
['CultriX/Qwen2.5-14B-Wernickev7', 'https://huggingface.co./CultriX/Qwen2.5-14B-Wernickev7', 0.7147, 0.7599, 0.6097, 0.7056, 0.57, 0.7164], | |
['CultriX/Qwen2.5-14B-FinalMerge-tmp2', 'https://huggingface.co./CultriX/Qwen2.5-14B-FinalMerge-tmp2', 0.7255, 0.8192, 0.7535, 0.6671, 0.5, 0.7612], | |
['CultriX/Qwen2.5-14B-BrocaV8', 'https://huggingface.co./CultriX/Qwen2.5-14B-BrocaV8', 0.7415, 0.8396, 0.7334, 0.5785, 0.43, 0.7646], | |
['CultriX/Qwexit-2.5-14B-2024', 'https://huggingface.co./CultriX/Qwexit-2.5-14B-2024', 0.7253, 0.8174, 0.7456, 0.6688, 0.5300, 0.7027], | |
['CultriX/Qwen2.5-14B-BrocaV9', 'https://huggingface.co./CultriX/Qwen2.5-14B-BrocaV9', 0.7432, 0.8307, 0.7467, 0.6221, 0.5000, 0.7623], | |
['CultriX/Qwen2.5-14B-partialmergept1', 'https://huggingface.co./CultriX/Qwen2.5-14B-partialmergept1', 0.7389, 0.8370, 0.7451, 0.6715, 0.5700, 0.7308], | |
['CultriX/Qwen2.5-14B-partialmergept2', 'https://huggingface.co./CultriX/Qwen2.5-14B-partialmergept2', 0.7300, 0.8428, 0.7371, 0.5944, 0.4200, 0.7581], | |
['CultriX/model', 'https://huggingface.co./CultriX/model', 0.7010, 0.8320, 0.7194, 0.6158, 0.4700, 0.7385], | |
['CultriX/Qwen2.5-14B-BrocaFinal', 'https://huggingface.co./CultriX/Qwen2.5-14B-BrocaFinal', 0.6265, 0.7688, 0.7007, 0.7035, 0.5100, 0.7218], | |
['CultriX/Qwen2.5-14B-Hyperionv1', 'https://huggingface.co./CultriX/Qwen2.5-14B-Hyperionv1', 0.7300, 0.8477, 0.7448, 0.6063, 0.4400, 0.7651], | |
['CultriX/Qwen2.5-14B-Hyperionv3', 'https://huggingface.co./CultriX/Qwen2.5-14B-Hyperionv3', 0.7445, 0.8414, 0.7458, 0.6371, 0.4900, 0.7543], | |
['sometimesanotion/Lamarck-14B-v0.6', 'https://hf.xwall.us.kg.m/sometimesanotion/Lamarck-14B-v0.6', 0.7446, 0.8294, 0.7368, 0.6008, 0.4300, 0.7423], | |
['CultriX/Qwen2.5-14B-Hyper', 'https://hf.xwall.us.kg.m/CultriX/Qwen2.5-14B-Hyper', 0.7372, 0.8411, 0.7424, 0.5830, 0.4400, 0.7792], | |
['CultriX/Qwen2.5-14B-Hyperionv4', 'https://huggingface.co./CultriX/Qwen2.5-14B-Hyperionv4', 0.7305, 0.8359, 0.7454, 0.5827, 0.4600, 0.7797], | |
['CultriX/Qwen2.5-14B-Hyperionv5', 'https://huggingface.co./CultriX/Qwen2.5-14B-Hyperionv5', 0.7458, 0.8290, 0.7508, 0.6228, 0.5200, 0.7540], | |
['CultriX/Qwen2.5-14B-Hyperionv6', 'https://huggingface.co./CultriX/Qwen2.5-14B-Hyperionv6', 0.7430, 0.8308, 0.7353, 0.6184, 0.4500, 0.7665], | |
['CultriX/Qwen2.5-14B-Hyperionv7', 'https://huggingface.co./CultriX/Qwen2.5-14B-Hyperionv7', 0.7412, 0.8287, 0.7508, 0.6208, 0.4800, 0.7532], | |
] | |
columns = [ | |
"Model Configuration", "Model Link", "tinyArc", "tinyHellaswag", | |
"tinyMMLU", "tinyTruthfulQA", "tinyTruthfulQA_mc1", "tinyWinogrande" | |
] | |
df_full = pd.DataFrame(data_full, columns=columns) | |
def plot_average_scores(): | |
df_full["Average Score"] = df_full.iloc[:, 2:].mean(axis=1) | |
df_avg_sorted = df_full.sort_values(by="Average Score", ascending=False) | |
plt.figure(figsize=(14, 10)) | |
plt.barh(df_avg_sorted["Model Configuration"], df_avg_sorted["Average Score"]) | |
plt.title("Average Performance of Models Across Tasks", fontsize=16) | |
plt.xlabel("Average Score", fontsize=14) | |
plt.ylabel("Model Configuration", fontsize=14) | |
plt.gca().invert_yaxis() | |
plt.grid(axis='x', linestyle='--', alpha=0.7) | |
plt.tight_layout() | |
img_buffer = io.BytesIO() | |
plt.savefig(img_buffer, format='png') | |
img_buffer.seek(0) | |
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8') | |
plt.close() | |
pil_image = Image.open(BytesIO(base64.b64decode(img_base64))) | |
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False) | |
pil_image.save(temp_image_file.name) | |
return pil_image, temp_image_file.name | |
def plot_task_performance(): | |
df_full_melted = df_full.melt( | |
id_vars=["Model Configuration", "Model Link"], | |
var_name="Task", value_name="Score" | |
) | |
plt.figure(figsize=(16, 12)) | |
for model in df_full["Model Configuration"]: | |
model_data = df_full_melted[df_full_melted["Model Configuration"] == model] | |
plt.plot(model_data["Task"], model_data["Score"], marker="o", label=model) | |
plt.title("Performance of All Models Across Tasks", fontsize=16) | |
plt.xlabel("Task", fontsize=14) | |
plt.ylabel("Score", fontsize=14) | |
plt.xticks(rotation=45) | |
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize=9) | |
plt.grid(axis='y', linestyle='--', alpha=0.7) | |
plt.tight_layout() | |
img_buffer = io.BytesIO() | |
plt.savefig(img_buffer, format='png') | |
img_buffer.seek(0) | |
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8') | |
plt.close() | |
pil_image = Image.open(BytesIO(base64.b64decode(img_base64))) | |
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False) | |
pil_image.save(temp_image_file.name) | |
return pil_image, temp_image_file.name | |
def plot_task_specific_top_models(): | |
top_models = df_full.iloc[:, 2:].idxmax() | |
top_scores = df_full.iloc[:, 2:].max() | |
results = pd.DataFrame({"Top Model": top_models, "Score": top_scores}).reset_index().rename(columns={"index": "Task"}) | |
plt.figure(figsize=(14, 8)) | |
plt.bar(results["Task"], results["Score"]) | |
plt.title("Task-Specific Top Models", fontsize=16) | |
plt.xlabel("Task", fontsize=14) | |
plt.ylabel("Score", fontsize=14) | |
plt.grid(axis="y", linestyle="--", alpha=0.7) | |
plt.tight_layout() | |
img_buffer = io.BytesIO() | |
plt.savefig(img_buffer, format='png') | |
img_buffer.seek(0) | |
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8') | |
plt.close() | |
pil_image = Image.open(BytesIO(base64.b64decode(img_base64))) | |
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False) | |
pil_image.save(temp_image_file.name) | |
return pil_image, temp_image_file.name | |
def plot_heatmap(): | |
# Add a column for the total scores across all tasks | |
df_full["Total Scores"] = df_full.iloc[:, 2:].sum(axis=1) | |
# Normalize each column individually for consistent coloring | |
normalized_data = df_full.iloc[:, 2:].apply(lambda x: (x - x.min()) / (x.max() - x.min()), axis=0) | |
plt.figure(figsize=(14, 10)) | |
sns.heatmap( | |
normalized_data, | |
annot=df_full.iloc[:, 2:], # Show actual values in annotations | |
cmap="YlGnBu", | |
xticklabels=list(columns[2:]) + ["Total Scores"], | |
yticklabels=df_full["Model Configuration"] | |
) | |
plt.title("Performance Heatmap", fontsize=16) | |
plt.tight_layout() | |
img_buffer = io.BytesIO() | |
plt.savefig(img_buffer, format='png') | |
img_buffer.seek(0) | |
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8') | |
plt.close() | |
pil_image = Image.open(BytesIO(base64.b64decode(img_base64))) | |
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False) | |
pil_image.save(temp_image_file.name) | |
return pil_image, temp_image_file.name | |
def scrape_mergekit_config(model_name): | |
""" | |
For the *tiny* table’s model links. | |
Scrapes <pre> tags on the huggingface model page to find a YAML config. | |
""" | |
df_row = df_full.loc[df_full["Model Configuration"] == model_name] | |
if df_row.empty: | |
return f"No data found for model {model_name}." | |
model_link = df_row["Model Link"].values[0] | |
response = requests.get(model_link) | |
if response.status_code != 200: | |
return f"Failed to fetch model page for {model_name}. Please check the link." | |
soup = BeautifulSoup(response.text, "html.parser") | |
yaml_config = soup.find("pre") # Assume YAML is in <pre> tags | |
if yaml_config: | |
return yaml_config.text.strip() | |
return f"No YAML configuration found for {model_name}." | |
def download_yaml(yaml_content, model_name): | |
""" | |
Let users download the scraped YAML if it exists. | |
""" | |
if "No YAML configuration found" in yaml_content or "Failed to fetch model page" in yaml_content: | |
return None | |
filename = f"{model_name.replace('/', '_')}_config.yaml" | |
return gr.File(value=yaml_content.encode(), filename=filename) | |
def scrape_model_page(model_url): | |
""" | |
Used for the "Live Scraping" text box in the Gradio UI. | |
""" | |
try: | |
response = requests.get(model_url) | |
if response.status_code != 200: | |
return f"Error: Unable to fetch the page (Status Code: {response.status_code})" | |
soup = BeautifulSoup(response.text, "html.parser") | |
yaml_config = soup.find("pre") | |
yaml_text = yaml_config.text.strip() if yaml_config else "No YAML configuration found." | |
metadata_section = soup.find("div", class_="metadata") | |
metadata_text = metadata_section.text.strip() if metadata_section else "No metadata found." | |
return f"**YAML Configuration:**\n{yaml_text}\n\n**Metadata:**\n{metadata_text}" | |
except Exception as e: | |
return f"Error: {str(e)}" | |
def display_scraped_model_data(model_url): | |
""" | |
Helper for the "Live Scraping Features" section of the Gradio app. | |
""" | |
return scrape_model_page(model_url) | |
def download_all_data(): | |
""" | |
Builds and returns a zip of: | |
- the CSV of your 'tiny' data, | |
- four plots (average performance, task performance, top models, heatmap), | |
- any YAML configurations for the 'tiny' table's models (if found). | |
""" | |
import io | |
csv_buffer = io.StringIO() | |
df_full.to_csv(csv_buffer, index=False) | |
csv_data = csv_buffer.getvalue().encode('utf-8') | |
average_plot_pil, average_plot_name = plot_average_scores() | |
task_plot_pil, task_plot_name = plot_task_performance() | |
top_models_plot_pil, top_models_plot_name = plot_task_specific_top_models() | |
heatmap_plot_pil, heatmap_plot_name = plot_heatmap() | |
plot_dict = { | |
"average_performance": (average_plot_pil, average_plot_name), | |
"task_performance": (task_plot_pil, task_plot_name), | |
"top_models": (top_models_plot_pil, top_models_plot_name), | |
"heatmap": (heatmap_plot_pil, heatmap_plot_name) | |
} | |
zip_buffer = io.BytesIO() | |
with zipfile.ZipFile(zip_buffer, 'w') as zf: | |
zf.writestr("model_scores.csv", csv_data) | |
# Add the images | |
for name, (pil_image, filename) in plot_dict.items(): | |
image_bytes = io.BytesIO() | |
pil_image.save(image_bytes, format='PNG') | |
image_bytes.seek(0) | |
zf.writestr(filename, image_bytes.read()) | |
# Also try scraping each model in the *tiny* dataset for a YAML config | |
for model_name in df_full["Model Configuration"].to_list(): | |
yaml_content = scrape_mergekit_config(model_name) | |
if ("No YAML configuration found" not in yaml_content) and ("Failed to fetch model page" not in yaml_content): | |
zf.writestr(f"{model_name.replace('/', '_')}_config.yaml", yaml_content.encode()) | |
zip_buffer.seek(0) | |
return zip_buffer, "analysis_data.zip" | |
# -------------------------------------------------------------------- | |
# PART 2: THE "DATA START" SNIPPET (RANKS 44–105) + Parser | |
# -------------------------------------------------------------------- | |
# This is your larger dataset, rank = 44..105 | |
benchmark_data = [ | |
{ | |
"rank": 44, | |
"name": "sometimesanotion/Qwen2.5-14B-Vimarckoso-v3", | |
"scores": { | |
"average": 40.10, | |
"IFEval": 72.57, | |
"BBH": 48.58, | |
"MATH": 34.44, | |
"GPQA": 17.34, | |
"MUSR": 19.39, | |
"MMLU-PRO": 48.26 | |
}, | |
"hf_url": "https://huggingface.co./sometimesanotion/Qwen2.5-14B-Vimarckoso-v3", | |
"known_config": { | |
"models": [ | |
{"model": "CultriX/SeQwence-14Bv1"}, | |
{"model": "allknowingroger/Qwenslerp5-14B"} | |
], | |
"merge_method": "slerp", | |
"base_model": "CultriX/SeQwence-14Bv1", | |
"dtype": "bfloat16", | |
"parameters": { | |
"t": [0, 0.5, 1, 0.5, 0] | |
} | |
} | |
}, | |
{ | |
"rank": 45, | |
"name": "sthenno-com/miscii-14b-1225", | |
"scores": { | |
"average": 40.08, | |
"IFEval": 78.78, | |
"BBH": 50.91, | |
"MATH": 31.57, | |
"GPQA": 17.00, | |
"MUSR": 14.77, | |
"MMLU-PRO": 47.46 | |
}, | |
"hf_url": "https://huggingface.co./sthenno-com/miscii-14b-1225", | |
"known_config": None | |
}, | |
{ | |
"rank": 46, | |
"name": "djuna/Q2.5-Veltha-14B-0.5", | |
"scores": { | |
"average": 39.96, | |
"IFEval": 77.96, | |
"BBH": 50.32, | |
"MATH": 33.84, | |
"GPQA": 15.77, | |
"MUSR": 14.17, | |
"MMLU-PRO": 47.72 | |
}, | |
"hf_url": "https://huggingface.co./djuna/Q2.5-Veltha-14B-0.5", | |
"known_config": None | |
}, | |
{ | |
"rank": 48, | |
"name": "sometimesanotion/Qwen2.5-14B-Vimarckoso-v3-model_stock", | |
"scores": { | |
"average": 39.81, | |
"IFEval": 71.62, | |
"BBH": 48.76, | |
"MATH": 33.99, | |
"GPQA": 17.34, | |
"MUSR": 19.23, | |
"MMLU-PRO": 47.95 | |
}, | |
"hf_url": "https://huggingface.co./sometimesanotion/Qwen2.5-14B-Vimarckoso-v3-model_stock", | |
"known_config": None | |
}, | |
{ | |
"rank": 50, | |
"name": "sometimesanotion/Qwen2.5-14B-Vimarckoso-v3-Prose01", | |
"scores": { | |
"average": 39.46, | |
"IFEval": 68.72, | |
"BBH": 47.71, | |
"MATH": 35.05, | |
"GPQA": 18.23, | |
"MUSR": 19.56, | |
"MMLU-PRO": 47.50 | |
}, | |
"hf_url": "https://huggingface.co./sometimesanotion/Qwen2.5-14B-Vimarckoso-v3-Prose01", | |
"known_config": None | |
}, | |
{ | |
"rank": 52, | |
"name": "arcee-ai/Virtuoso-Small", | |
"scores": { | |
"average": 39.43, | |
"IFEval": 79.35, | |
"BBH": 50.40, | |
"MATH": 34.29, | |
"GPQA": 11.52, | |
"MUSR": 14.44, | |
"MMLU-PRO": 46.57 | |
}, | |
"hf_url": "https://huggingface.co./arcee-ai/Virtuoso-Small", | |
"known_config": None | |
}, | |
{ | |
"rank": 54, | |
"name": "sometimesanotion/Qwentinuum-14B-v6", | |
"scores": { | |
"average": 39.23, | |
"IFEval": 63.04, | |
"BBH": 50.23, | |
"MATH": 33.84, | |
"GPQA": 18.23, | |
"MUSR": 21.18, | |
"MMLU-PRO": 48.89 | |
}, | |
"hf_url": "https://huggingface.co./sometimesanotion/Qwentinuum-14B-v6", | |
"known_config": None | |
}, | |
{ | |
"rank": 55, | |
"name": "djuna/Q2.5-Veltha-14B", | |
"scores": { | |
"average": 39.21, | |
"IFEval": 82.92, | |
"BBH": 49.75, | |
"MATH": 28.02, | |
"GPQA": 14.54, | |
"MUSR": 12.26, | |
"MMLU-PRO": 47.76 | |
}, | |
"hf_url": "https://huggingface.co./djuna/Q2.5-Veltha-14B", | |
"known_config": None | |
}, | |
{ | |
"rank": 57, | |
"name": "allknowingroger/QwenSlerp6-14B", | |
"scores": { | |
"average": 39.02, | |
"IFEval": 68.67, | |
"BBH": 47.59, | |
"MATH": 34.14, | |
"GPQA": 16.44, | |
"MUSR": 18.32, | |
"MMLU-PRO": 48.95 | |
}, | |
"hf_url": "https://huggingface.co./allknowingroger/QwenSlerp6-14B", | |
"known_config": None | |
}, | |
{ | |
"rank": 58, | |
"name": "allknowingroger/QwenSlerp5-14B", | |
"scores": { | |
"average": 38.94, | |
"IFEval": 71.19, | |
"BBH": 47.39, | |
"MATH": 33.16, | |
"GPQA": 15.32, | |
"MUSR": 17.81, | |
"MMLU-PRO": 48.78 | |
}, | |
"hf_url": "https://huggingface.co./allknowingroger/QwenSlerp5-14B", | |
"known_config": None | |
}, | |
{ | |
"rank": 59, | |
"name": "sometimesanotion/Qwentinuum-14B-v5", | |
"scores": { | |
"average": 38.87, | |
"IFEval": 62.86, | |
"BBH": 50.28, | |
"MATH": 31.57, | |
"GPQA": 18.34, | |
"MUSR": 21.09, | |
"MMLU-PRO": 49.09 | |
}, | |
"hf_url": "https://huggingface.co./sometimesanotion/Qwentinuum-14B-v5", | |
"known_config": None | |
}, | |
{ | |
"rank": 60, | |
"name": "sometimesanotion/Qwenvergence-14B-v6-Prose", | |
"scores": { | |
"average": 38.82, | |
"IFEval": 59.90, | |
"BBH": 50.12, | |
"MATH": 34.89, | |
"GPQA": 18.46, | |
"MUSR": 21.02, | |
"MMLU-PRO": 48.56 | |
}, | |
"hf_url": "https://huggingface.co./sometimesanotion/Qwenvergence-14B-v6-Prose", | |
"known_config": None | |
}, | |
{ | |
"rank": 61, | |
"name": "CultriX/Qwen2.5-14B-Brocav3", | |
"scores": { | |
"average": 38.76, | |
"IFEval": 69.52, | |
"BBH": 49.05, | |
"MATH": 32.25, | |
"GPQA": 14.54, | |
"MUSR": 19.25, | |
"MMLU-PRO": 47.97 | |
}, | |
"hf_url": "https://huggingface.co./CultriX/Qwen2.5-14B-Brocav3", | |
"known_config": None | |
}, | |
{ | |
"rank": 62, | |
"name": "sometimesanotion/Qwentinuum-14B-v7", | |
"scores": { | |
"average": 38.76, | |
"IFEval": 61.09, | |
"BBH": 50.35, | |
"MATH": 33.38, | |
"GPQA": 18.79, | |
"MUSR": 19.95, | |
"MMLU-PRO": 49.00 | |
}, | |
"hf_url": "https://huggingface.co./sometimesanotion/Qwentinuum-14B-v7", | |
"known_config": None | |
}, | |
{ | |
"rank": 64, | |
"name": "sometimesanotion/Qwentinuum-14B-v3", | |
"scores": { | |
"average": 38.74, | |
"IFEval": 61.58, | |
"BBH": 50.04, | |
"MATH": 32.85, | |
"GPQA": 18.34, | |
"MUSR": 20.62, | |
"MMLU-PRO": 49.03 | |
}, | |
"hf_url": "https://huggingface.co./sometimesanotion/Qwentinuum-14B-v3", | |
"known_config": None | |
}, | |
{ | |
"rank": 65, | |
"name": "allura-org/TQ2.5-14B-Aletheia-v1", | |
"scores": { | |
"average": 38.74, | |
"IFEval": 75.30, | |
"BBH": 50.88, | |
"MATH": 29.53, | |
"GPQA": 14.99, | |
"MUSR": 14.61, | |
"MMLU-PRO": 47.12 | |
}, | |
"hf_url": "https://huggingface.co./allura-org/TQ2.5-14B-Aletheia-v1", | |
"known_config": None | |
}, | |
{ | |
"rank": 66, | |
"name": "qingy2024/Fusion4-14B-Instruct", | |
"scores": { | |
"average": 38.73, | |
"IFEval": 76.49, | |
"BBH": 50.70, | |
"MATH": 33.91, | |
"GPQA": 10.74, | |
"MUSR": 13.97, | |
"MMLU-PRO": 46.60 | |
}, | |
"hf_url": "https://huggingface.co./qingy2024/Fusion4-14B-Instruct", | |
"known_config": None | |
}, | |
{ | |
"rank": 68, | |
"name": "CultriX/Qwen2.5-14B-Brocav7", | |
"scores": { | |
"average": 38.52, | |
"IFEval": 67.24, | |
"BBH": 48.91, | |
"MATH": 31.87, | |
"GPQA": 15.66, | |
"MUSR": 20.15, | |
"MMLU-PRO": 47.31 | |
}, | |
"hf_url": "https://huggingface.co./CultriX/Qwen2.5-14B-Brocav7", | |
"known_config": None | |
}, | |
{ | |
"rank": 71, | |
"name": "sometimesanotion/Qwentinuum-14B-v6-Prose", | |
"scores": { | |
"average": 38.46, | |
"IFEval": 56.43, | |
"BBH": 50.14, | |
"MATH": 35.57, | |
"GPQA": 18.46, | |
"MUSR": 21.34, | |
"MMLU-PRO": 48.80 | |
}, | |
"hf_url": "https://huggingface.co./sometimesanotion/Qwentinuum-14B-v6-Prose", | |
"known_config": None | |
}, | |
{ | |
"rank": 76, | |
"name": "CultriX/Qwen2.5-14B-Brocav6", | |
"scores": { | |
"average": 38.32, | |
"IFEval": 69.95, | |
"BBH": 47.82, | |
"MATH": 29.61, | |
"GPQA": 15.66, | |
"MUSR": 18.88, | |
"MMLU-PRO": 47.99 | |
}, | |
"hf_url": "https://huggingface.co./CultriX/Qwen2.5-14B-Brocav6", | |
"known_config": None | |
}, | |
{ | |
"rank": 80, | |
"name": "CultriX/SeQwence-14Bv1", | |
"scores": { | |
"average": 38.20, | |
"IFEval": 66.78, | |
"BBH": 47.19, | |
"MATH": 33.53, | |
"GPQA": 14.88, | |
"MUSR": 18.80, | |
"MMLU-PRO": 48.00 | |
}, | |
"hf_url": "https://huggingface.co./CultriX/SeQwence-14Bv1", | |
"known_config": None | |
}, | |
{ | |
"rank": 85, | |
"name": "sometimesanotion/Qwentinuum-14B-v013", | |
"scores": { | |
"average": 37.96, | |
"IFEval": 67.11, | |
"BBH": 43.97, | |
"MATH": 33.01, | |
"GPQA": 14.32, | |
"MUSR": 24.99, | |
"MMLU-PRO": 44.34 | |
}, | |
"hf_url": "https://huggingface.co./sometimesanotion/Qwentinuum-14B-v013", | |
"known_config": None | |
}, | |
{ | |
"rank": 86, | |
"name": "CultriX/Qwen2.5-14B-Wernickev3", | |
"scores": { | |
"average": 37.94, | |
"IFEval": 70.48, | |
"BBH": 44.58, | |
"MATH": 32.78, | |
"GPQA": 14.99, | |
"MUSR": 18.69, | |
"MMLU-PRO": 46.13 | |
}, | |
"hf_url": "https://huggingface.co./CultriX/Qwen2.5-14B-Wernickev3", | |
"known_config": None | |
}, | |
{ | |
"rank": 88, | |
"name": "allknowingroger/QwenSlerp4-14B", | |
"scores": { | |
"average": 37.80, | |
"IFEval": 63.28, | |
"BBH": 49.38, | |
"MATH": 30.97, | |
"GPQA": 16.33, | |
"MUSR": 17.59, | |
"MMLU-PRO": 49.28 | |
}, | |
"hf_url": "https://huggingface.co./allknowingroger/QwenSlerp4-14B", | |
"known_config": None | |
}, | |
{ | |
"rank": 89, | |
"name": "CultriX/Qwen2.5-14B-Broca", | |
"scores": { | |
"average": 37.72, | |
"IFEval": 56.04, | |
"BBH": 50.03, | |
"MATH": 34.59, | |
"GPQA": 18.23, | |
"MUSR": 18.95, | |
"MMLU-PRO": 48.49 | |
}, | |
"hf_url": "https://huggingface.co./CultriX/Qwen2.5-14B-Broca", | |
"known_config": None | |
}, | |
{ | |
"rank": 90, | |
"name": "CultriX/Qwen2.5-14B-Emerged", | |
"scores": { | |
"average": 37.66, | |
"IFEval": 70.00, | |
"BBH": 45.93, | |
"MATH": 30.74, | |
"GPQA": 14.32, | |
"MUSR": 18.47, | |
"MMLU-PRO": 46.51 | |
}, | |
"hf_url": "https://huggingface.co./CultriX/Qwen2.5-14B-Emerged", | |
"known_config": None | |
}, | |
{ | |
"rank": 91, | |
"name": "sometimesanotion/Qwentinuum-14B-v8", | |
"scores": { | |
"average": 37.65, | |
"IFEval": 54.12, | |
"BBH": 50.11, | |
"MATH": 34.14, | |
"GPQA": 17.79, | |
"MUSR": 20.75, | |
"MMLU-PRO": 49.02 | |
}, | |
"hf_url": "https://huggingface.co./sometimesanotion/Qwentinuum-14B-v8", | |
"known_config": None | |
}, | |
{ | |
"rank": 92, | |
"name": "qingy2024/Fusion-14B-Instruct", | |
"scores": { | |
"average": 37.64, | |
"IFEval": 72.60, | |
"BBH": 48.58, | |
"MATH": 30.97, | |
"GPQA": 13.98, | |
"MUSR": 14.81, | |
"MMLU-PRO": 44.93 | |
}, | |
"hf_url": "https://huggingface.co./qingy2024/Fusion-14B-Instruct", | |
"known_config": None | |
}, | |
{ | |
"rank": 94, | |
"name": "CultriX/Qwestion-14B", | |
"scores": { | |
"average": 37.63, | |
"IFEval": 63.18, | |
"BBH": 48.76, | |
"MATH": 31.72, | |
"GPQA": 15.77, | |
"MUSR": 17.22, | |
"MMLU-PRO": 49.14 | |
}, | |
"hf_url": "https://huggingface.co./CultriX/Qwestion-14B", | |
"known_config": None | |
}, | |
{ | |
"rank": 99, | |
"name": "sometimesanotion/Qwenvergence-14B-v3-Prose", | |
"scores": { | |
"average": 37.37, | |
"IFEval": 49.18, | |
"BBH": 49.80, | |
"MATH": 35.57, | |
"GPQA": 19.35, | |
"MUSR": 21.77, | |
"MMLU-PRO": 48.55 | |
}, | |
"hf_url": "https://huggingface.co./sometimesanotion/Qwenvergence-14B-v3-Prose", | |
"known_config": None | |
}, | |
{ | |
"rank": 102, | |
"name": "CultriX/SeQwence-14B-v5", | |
"scores": { | |
"average": 37.27, | |
"IFEval": 59.20, | |
"BBH": 50.00, | |
"MATH": 31.04, | |
"GPQA": 16.00, | |
"MUSR": 18.33, | |
"MMLU-PRO": 49.05 | |
}, | |
"hf_url": "https://huggingface.co./CultriX/SeQwence-14B-v5", | |
"known_config": None | |
}, | |
{ | |
"rank": 103, | |
"name": "sometimesanotion/Qwen-14B-ProseStock-v4", | |
"scores": { | |
"average": 37.23, | |
"IFEval": 49.42, | |
"BBH": 49.54, | |
"MATH": 35.50, | |
"GPQA": 18.46, | |
"MUSR": 21.70, | |
"MMLU-PRO": 48.74 | |
}, | |
"hf_url": "https://huggingface.co./sometimesanotion/Qwen-14B-ProseStock-v4", | |
"known_config": None | |
}, | |
{ | |
"rank": 104, | |
"name": "sometimesanotion/IF-reasoning-experiment-40", | |
"scores": { | |
"average": 37.21, | |
"IFEval": 63.30, | |
"BBH": 44.31, | |
"MATH": 27.72, | |
"GPQA": 17.34, | |
"MUSR": 25.86, | |
"MMLU-PRO": 44.72 | |
}, | |
"hf_url": "https://huggingface.co./sometimesanotion/IF-reasoning-experiment-40", | |
"known_config": None | |
}, | |
{ | |
"rank": 105, | |
"name": "CultriX/SeQwence-14B-EvolMerge", | |
"scores": { | |
"average": 37.20, | |
"IFEval": 53.82, | |
"BBH": 50.78, | |
"MATH": 31.80, | |
"GPQA": 17.45, | |
"MUSR": 20.26, | |
"MMLU-PRO": 49.10 | |
}, | |
"hf_url": "https://huggingface.co./CultriX/SeQwence-14B-EvolMerge", | |
"known_config": None | |
} | |
] | |
def snippet_scrape_model_page(url): | |
""" | |
Equivalent scraping function for the larger dataset | |
to look for <pre> YAML and a .metadata section. | |
""" | |
try: | |
response = requests.get(url) | |
if response.status_code != 200: | |
return f"Error: Unable to fetch the page (Status Code: {response.status_code})" | |
soup = BeautifulSoup(response.text, "html.parser") | |
yaml_config = soup.find("pre") | |
yaml_text = yaml_config.text.strip() if yaml_config else "No YAML configuration found." | |
metadata_section = soup.find("div", class_="metadata") | |
metadata_text = metadata_section.text.strip() if metadata_section else "No metadata found." | |
return { | |
"yaml_configuration": yaml_text, | |
"metadata": metadata_text | |
} | |
except Exception as e: | |
return f"Error: {str(e)}" | |
def snippet_print_benchmark_and_config_info(model_info): | |
""" | |
Prints an overview for each model in the rank=44..105 dataset. | |
If known_config is not None, prints it. Otherwise attempts to scrape. | |
""" | |
print(f"---\nModel Rank: {model_info['rank']}") | |
print(f"Model Name: {model_info['name']}") | |
print(f"Model average score across benchmarks in %: {model_info['scores']['average']}") | |
print(f"Models average score on IFEval benchmarks in %: {model_info['scores']['IFEval']}") | |
print(f"Models average score on BBH benchmarks in %: {model_info['scores']['BBH']}") | |
print(f"Models average score on MATH benchmarks in %: {model_info['scores']['MATH']}") | |
print(f"Models average score in GPQA benchmarks in %: {model_info['scores']['GPQA']}") | |
print(f"Models average score in MUSR benchmarks in %: {model_info['scores']['MUSR']}") | |
print(f"Models average score in MMLU-PRO benchmarks in %: {model_info['scores']['MMLU-PRO']}") | |
# If there's a known_config, print it in YAML form and stop. | |
if model_info["known_config"] is not None: | |
print("###") | |
print("models:") | |
for m in model_info["known_config"]["models"]: | |
print(f" - model: {m['model']}") | |
print(f"merge_method: {model_info['known_config']['merge_method']}") | |
print(f"base_model: {model_info['known_config']['base_model']}") | |
print(f"dtype: {model_info['known_config']['dtype']}") | |
print("parameters:") | |
t_vals = model_info["known_config"]["parameters"]["t"] | |
print(f" t: {t_vals} # V shaped curve: Hermes for input & output, WizardMath in the middle layers") | |
print("###") | |
return | |
# Otherwise, do scraping: | |
scraped = snippet_scrape_model_page(model_info["hf_url"]) | |
if isinstance(scraped, str): | |
# Means it's an error string or something | |
print("(No MergeKit configuration found or scraping error.)") | |
print(scraped) | |
return | |
else: | |
# It's presumably a dict | |
if "No YAML configuration found." in scraped["yaml_configuration"]: | |
print("(No MergeKit configuration found.)\n") | |
print("You can try the following Python script to scrape the model page:\n") | |
print("#" * 70) | |
print(f'''import requests | |
from bs4 import BeautifulSoup | |
def scrape_model_page(model_url): | |
try: | |
response = requests.get(model_url) | |
if response.status_code != 200: | |
return f"Error: Unable to fetch the page (Status Code: {{response.status_code}})" | |
soup = BeautifulSoup(response.text, "html.parser") | |
yaml_config = soup.find("pre") | |
yaml_text = yaml_config.text.strip() if yaml_config else "No YAML configuration found." | |
metadata_section = soup.find("div", class_="metadata") | |
metadata_text = metadata_section.text.strip() if metadata_section else "No metadata found." | |
return {{ | |
"yaml_configuration": yaml_text, | |
"metadata": metadata_text | |
}} | |
except Exception as e: | |
return f"Error: {{str(e)}}" | |
if __name__ == "__main__": | |
model_url = "{model_info['hf_url']}" | |
result = scrape_model_page(model_url) | |
print(result)''') | |
print("#" * 70) | |
else: | |
# Found some YAML | |
print("###") | |
print(scraped["yaml_configuration"]) | |
print("###") | |
def run_non_tiny_benchmarks(): | |
""" | |
Captures the stdout from printing each model in benchmark_data (ranks 44..105), | |
returning the entire output as a single string for Gradio to display. | |
""" | |
old_stdout = sys.stdout | |
buffer = io.StringIO() | |
sys.stdout = buffer | |
for model in benchmark_data: | |
snippet_print_benchmark_and_config_info(model) | |
sys.stdout = old_stdout | |
return buffer.getvalue() | |
# -------------------------------------------------------------------- | |
# PART 3: The Gradio App | |
# -------------------------------------------------------------------- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Comprehensive Model Performance Analysis with Hugging Face Links") | |
# The existing UI for the “tiny” data | |
with gr.Row(): | |
btn1 = gr.Button("Show Average Performance") | |
img1 = gr.Image(type="pil", label="Average Performance Plot") | |
img1_download = gr.File(label="Download Average Performance") | |
btn1.click(plot_average_scores, outputs=[img1, img1_download]) | |
with gr.Row(): | |
btn2 = gr.Button("Show Task Performance") | |
img2 = gr.Image(type="pil", label="Task Performance Plot") | |
img2_download = gr.File(label="Download Task Performance") | |
btn2.click(plot_task_performance, outputs=[img2, img2_download]) | |
with gr.Row(): | |
btn3 = gr.Button("Task-Specific Top Models") | |
img3 = gr.Image(type="pil", label="Task-Specific Top Models Plot") | |
img3_download = gr.File(label="Download Top Models") | |
btn3.click(plot_task_specific_top_models, outputs=[img3, img3_download]) | |
with gr.Row(): | |
btn4 = gr.Button("Plot Performance Heatmap") | |
heatmap_img = gr.Image(type="pil", label="Performance Heatmap") | |
heatmap_download = gr.File(label="Download Heatmap") | |
btn4.click(plot_heatmap, outputs=[heatmap_img, heatmap_download]) | |
# Scraping & YAML handling for the *tiny* table | |
with gr.Row(): | |
model_selector = gr.Dropdown(choices=df_full["Model Configuration"].tolist(), label="Select a Model") | |
with gr.Column(): | |
scrape_btn = gr.Button("Scrape MergeKit Configuration") | |
yaml_output = gr.Textbox(lines=10, placeholder="YAML Configuration will appear here.") | |
scrape_btn.click(scrape_mergekit_config, inputs=model_selector, outputs=yaml_output) | |
with gr.Column(): | |
save_yaml_btn = gr.Button("Save MergeKit Configuration") | |
yaml_download = gr.File(label="Download MergeKit Configuration") | |
save_yaml_btn.click(download_yaml, inputs=[yaml_output, model_selector], outputs=yaml_download) | |
# Download everything (CSV, plots, any found YAML) | |
with gr.Row(): | |
download_all_btn = gr.Button("Download Everything") | |
all_downloads = gr.File(label="Download All Data") | |
download_all_btn.click(download_all_data, outputs=all_downloads) | |
# Live Scraping | |
gr.Markdown("## Live Scraping Features") | |
with gr.Row(): | |
url_input = gr.Textbox(label="Enter Hugging Face Model URL", placeholder="https://huggingface.co./<model>") | |
live_scrape_btn = gr.Button("Scrape Model Page") | |
live_scrape_output = gr.Textbox(label="Scraped Data", lines=15) | |
live_scrape_btn.click(display_scraped_model_data, inputs=url_input, outputs=live_scrape_output) | |
# Non-Tiny Benchmarks | |
gr.Markdown("## Non-Tiny Benchmark Parser (Ranks 44–105)") | |
with gr.Row(): | |
parse_non_tiny_btn = gr.Button("Parse Non-Tiny Benchmarks") | |
parse_non_tiny_output = gr.Textbox(label="Non-Tiny Benchmark Output", lines=30) | |
parse_non_tiny_btn.click(fn=run_non_tiny_benchmarks, outputs=parse_non_tiny_output) | |
demo.launch() | |