Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import spaces | |
from transformers import GemmaTokenizer, AutoModelForCausalLM | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
from threading import Thread | |
# Set an environment variable | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
# Lê as variáveis de ambiente para autenticação e compartilhamento | |
#auth_users = os.environ.get("GRADIO_AUTH_USERS") | |
#auth_passwords = os.environ.get("GRADIO_AUTH_PASSWORDS") | |
# Converte as strings de usuários e senhas em listas | |
#auth_users = [user.strip() for user in auth_users.split(",")] | |
#auth_passwords = [password.strip() for password in auth_passwords.split(",")] | |
# Cria um dicionário de autenticação | |
#auth_credentials = dict(zip(auth_users, auth_passwords)) | |
DESCRIPTION = ''' | |
<div> | |
<h1 style="text-align: center;">Meta Llama3 8B</h1> | |
<p>This Space demonstrates the instruction-tuned model <a href="https://huggingface.co./meta-llama/Meta-Llama-3-8B-Instruct"><b>Meta Llama3 8b Chat</b></a>. Meta Llama3 is the new open LLM and comes in two sizes: 8b and 70b. Feel free to play with it, or duplicate to run privately!</p> | |
<p>🔎 For more details about the Llama3 release and how to use the model with <code>transformers</code>, take a look <a href="https://huggingface.co./blog/llama3">at our blog post</a>.</p> | |
<p>🦕 Looking for an even more powerful model? Check out the <a href="https://huggingface.co./chat/"><b>Hugging Chat</b></a> integration for Meta Llama 3 70b</p> | |
</div> | |
''' | |
LICENSE = """ | |
<p/> | |
--- | |
CreativeWoks AI: Intelligence System for Advanced Dialogue and Organized Responses Assistance | |
""" | |
PLACEHOLDER = """ | |
<div style="position: relative; text-align: center;"> | |
<h1 style="font-size: 2.5em; margin-top: 20px;">CreativeWorks Ai</h1> | |
<img src="https://utfs.io/f/4c8a3309-2ac3-453b-8441-04e5c5a3ed0f-361e80.svg" style="width: 80%; max-width: 50%; height: auto; opacity: 0.55; position: absolute; top: 50%; left: 50%; transform: translate(-50%, -50%); z-index: 0;"> | |
<div style="background-color: rgba(255, 255, 255, 0.8); /* Ajuste a opacidade do fundo do texto aqui */ | |
font-size: 1.2em; text-align: center; max-width: 800px; margin: auto; position: relative; z-index: 1; padding: 20px;"> | |
<p>Este espaço demonstra o modelo customizado para o português brasileiro <a href="https://huggingface.co./mistralai/Mistral-7B-v0.3"><b>Mistral-7B-v0.3</b></a>. O Mistral-7B-v0.3 Large Language Model (LLM) é uma versão do Mistral-7B-v0.2 com vocabulário expandido. A CreativeWorks modificou e afinou o modelo para que seja mais rápido e alcance desempenho comparável aos principais modelos de código aberto existentes 10 vezes maiores, incluindo diversas melhorias e otimização para raciocínio lógico, com foco em RAG (Recuperação Aumentada por Geração).</p> | |
<p>🔎 Para mais detalhes sobre o modelo e como utilizá-lo com <code>transformers</code>, dê uma olhada <a href="https://huggingface.co./CreativeWorksAi/CreativeWorks_Mistral_7b_Chat_V1">em nosso model card.</a>.</p> | |
<p>🦕 Procurando um modelo ainda mais poderoso? Confira a integração do <a href="https://huggingface.co./chat/"><b>Hugging Chat</b></a> para modelos maiores.</p> | |
</div> | |
</div> | |
""" | |
css = """ | |
h1 { | |
text-align: center; | |
display: block; | |
} | |
#duplicate-button { | |
margin: auto; | |
color: white; | |
background: #1565c0; | |
border-radius: 100vh; | |
} | |
""" | |
# Load the tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained("CreativeWorksAi/CreativeWorks_Mistral_7b_Chat_V1") | |
model = AutoModelForCausalLM.from_pretrained("CreativeWorksAi/CreativeWorks_Mistral_7b_Chat_V1", token=HF_TOKEN, device_map="auto") | |
#model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", device_map="auto") # to("cuda:0") | |
terminators = [ | |
tokenizer.eos_token_id, | |
tokenizer.convert_tokens_to_ids("</s>") | |
] | |
def CreativeWorks_Mistral_7b_Chat_V1(message: str, | |
history: list, | |
temperature: float, | |
max_new_tokens: int | |
) -> str: | |
""" | |
Generate a streaming response using the Mistral model. | |
Args: | |
message (str): The input message. | |
history (list): The conversation history used by ChatInterface. | |
temperature (float): The temperature for generating the response. | |
max_new_tokens (int): The maximum number of new tokens to generate. | |
Returns: | |
str: The generated response. | |
""" | |
conversation = [] | |
for user, assistant in history: | |
conversation.extend([{"from": "human", "value": user}, {"from": "assistant", "value": assistant}]) | |
conversation.append({"from": "human", "value": message}) | |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
input_ids=input_ids, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
temperature=temperature, | |
eos_token_id=terminators, | |
pad_token_id=tokenizer.eos_token_id | |
) | |
# This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash. | |
if temperature == 0: | |
generate_kwargs['do_sample'] = False | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
# Remove the unwanted prefix if present | |
text = text.replace("<|im_start|>assistant", " ") | |
outputs.append(text) | |
yield "".join(outputs) | |
# Gradio block | |
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='CreativeWorks Ai') | |
with gr.Blocks(fill_height=True, css=css) as demo: | |
#gr.Markdown(DESCRIPTION) | |
#gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") | |
gr.ChatInterface( | |
fn=CreativeWorks_Mistral_7b_Chat_V1, | |
chatbot=chatbot, | |
fill_height=True, | |
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), | |
additional_inputs=[ | |
gr.Slider(minimum=0, | |
maximum=1, | |
step=0.1, | |
value=0.95, | |
label="Temperature", | |
render=False), | |
gr.Slider(minimum=256, | |
maximum=8192, | |
step=1, | |
value=512, | |
label="Max new tokens", | |
render=False ), | |
], | |
examples=[ | |
['How to setup a human base on Mars? Give short answer.'], | |
['Explain theory of relativity to me like I’m 8 years old.'], | |
['What is 9,000 * 9,000?'], | |
['Write a pun-filled happy birthday message to my friend Alex.'], | |
['Justify why a penguin might make a good king of the jungle.'] | |
], | |
cache_examples=False, | |
) | |
gr.Markdown(LICENSE) | |
if __name__ == "__main__": | |
demo.launch(auth=("teste", "teste@teste"), share=True) | |