File size: 7,199 Bytes
6bcba58
 
 
 
 
 
 
 
 
 
5103369
ab711c8
89e5c18
 
ab711c8
b53673e
 
ab711c8
b53673e
6bcba58
 
54ac0bc
2932ae3
96ac3aa
6b02e11
6bcba58
 
 
6b02e11
 
0653671
6b02e11
0ce19af
 
6b02e11
 
454b0bf
5f667f4
 
a02ec5e
5f667f4
 
 
 
 
 
454b0bf
 
 
8861375
e17f0b6
 
 
 
 
 
 
 
 
 
 
 
 
6bcba58
b8a8a20
0ce19af
b8a8a20
2932ae3
 
1836f0e
2932ae3
6bcba58
 
ab711c8
6bcba58
 
 
 
 
ab711c8
6bcba58
 
 
 
 
 
 
 
 
 
1836f0e
 
6bcba58
 
 
 
ab711c8
6bcba58
 
 
 
2932ae3
0ce19af
6bcba58
ab711c8
 
6bcba58
 
 
 
 
 
 
ab711c8
 
6bcba58
 
 
 
 
70f82e5
6bcba58
e17f0b6
6bcba58
70f82e5
0ce19af
6bcba58
ab711c8
6bcba58
 
 
 
 
 
 
 
 
 
0ce19af
 
6bcba58
 
 
 
 
 
31c147a
 
 
 
 
6bcba58
 
 
 
6b02e11
 
6bcba58
89e5c18
6bcba58
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import gradio as gr
import os
import spaces
from transformers import GemmaTokenizer, AutoModelForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread

# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)


# Lê as variáveis de ambiente para autenticação e compartilhamento
#auth_users = os.environ.get("GRADIO_AUTH_USERS")
#auth_passwords = os.environ.get("GRADIO_AUTH_PASSWORDS")
# Converte as strings de usuários e senhas em listas
#auth_users = [user.strip() for user in auth_users.split(",")]
#auth_passwords = [password.strip() for password in auth_passwords.split(",")]
# Cria um dicionário de autenticação
#auth_credentials = dict(zip(auth_users, auth_passwords))
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">Meta Llama3 8B</h1>
<p>This Space demonstrates the instruction-tuned model <a href="https://huggingface.co./meta-llama/Meta-Llama-3-8B-Instruct"><b>Meta Llama3 8b Chat</b></a>. Meta Llama3 is the new open LLM and comes in two sizes: 8b and 70b. Feel free to play with it, or duplicate to run privately!</p>
<p>🔎 For more details about the Llama3 release and how to use the model with <code>transformers</code>, take a look <a href="https://huggingface.co./blog/llama3">at our blog post</a>.</p>
<p>🦕 Looking for an even more powerful model? Check out the <a href="https://huggingface.co./chat/"><b>Hugging Chat</b></a> integration for Meta Llama 3 70b</p>
</div>
'''

LICENSE = """
<p/>

---
CreativeWoks AI: Intelligence System for Advanced Dialogue and Organized Responses Assistance

"""

PLACEHOLDER = """
<div style="position: relative; text-align: center;">
    <h1 style="font-size: 2.5em; margin-top: 20px;">CreativeWorks Ai</h1>
    <img src="https://utfs.io/f/4c8a3309-2ac3-453b-8441-04e5c5a3ed0f-361e80.svg" style="width: 80%; max-width: 50%; height: auto; opacity: 0.55; position: absolute; top: 50%; left: 50%; transform: translate(-50%, -50%); z-index: 0;">
    <div style="background-color: rgba(255, 255, 255, 0.8); /* Ajuste a opacidade do fundo do texto aqui */
              font-size: 1.2em; text-align: center; max-width: 800px; margin: auto; position: relative; z-index: 1; padding: 20px;">
        <p>Este espaço demonstra o modelo customizado para o português brasileiro <a href="https://huggingface.co./mistralai/Mistral-7B-v0.3"><b>Mistral-7B-v0.3</b></a>. O Mistral-7B-v0.3 Large Language Model (LLM) é uma versão do Mistral-7B-v0.2 com vocabulário expandido. A CreativeWorks modificou e afinou o modelo para que seja mais rápido e alcance desempenho comparável aos principais modelos de código aberto existentes 10 vezes maiores, incluindo diversas melhorias e otimização para raciocínio lógico, com foco em RAG (Recuperação Aumentada por Geração).</p>
        <p>🔎 Para mais detalhes sobre o modelo e como utilizá-lo com <code>transformers</code>, dê uma olhada <a href="https://huggingface.co./CreativeWorksAi/CreativeWorks_Mistral_7b_Chat_V1">em nosso model card.</a>.</p>
        <p>🦕 Procurando um modelo ainda mais poderoso? Confira a integração do <a href="https://huggingface.co./chat/"><b>Hugging Chat</b></a> para modelos maiores.</p>
    </div>
</div>
"""


css = """
h1 {
  text-align: center;
  display: block;
}
#duplicate-button {
  margin: auto;
  color: white;
  background: #1565c0;
  border-radius: 100vh;
}
"""

# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("CreativeWorksAi/CreativeWorks_Mistral_7b_Chat_V1")
model = AutoModelForCausalLM.from_pretrained("CreativeWorksAi/CreativeWorks_Mistral_7b_Chat_V1", token=HF_TOKEN, device_map="auto")
#model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", device_map="auto")  # to("cuda:0") 
terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("</s>")
]

@spaces.GPU(duration=120)
def CreativeWorks_Mistral_7b_Chat_V1(message: str, 
              history: list, 
              temperature: float, 
              max_new_tokens: int
             ) -> str:
    """
    Generate a streaming response using the Mistral model.
    Args:
        message (str): The input message.
        history (list): The conversation history used by ChatInterface.
        temperature (float): The temperature for generating the response.
        max_new_tokens (int): The maximum number of new tokens to generate.
    Returns:
        str: The generated response.
    """
    conversation = []
    for user, assistant in history:
        conversation.extend([{"from": "human", "value": user}, {"from": "assistant", "value": assistant}])
    conversation.append({"from": "human", "value": message})
    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
    
    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        input_ids=input_ids,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        temperature=temperature,
        eos_token_id=terminators,
        pad_token_id=tokenizer.eos_token_id
    )
    
    # This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.
    if temperature == 0:
        generate_kwargs['do_sample'] = False
        
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()
    outputs = []
    for text in streamer:
        # Remove the unwanted prefix if present
        text = text.replace("<|im_start|>assistant", " ")
        outputs.append(text)
        yield "".join(outputs)
        

# Gradio block
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='CreativeWorks Ai')

with gr.Blocks(fill_height=True, css=css) as demo:
    
    #gr.Markdown(DESCRIPTION)
    #gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
    gr.ChatInterface(
        fn=CreativeWorks_Mistral_7b_Chat_V1,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(minimum=0,
                      maximum=1, 
                      step=0.1,
                      value=0.95, 
                      label="Temperature", 
                      render=False),
            gr.Slider(minimum=256, 
                      maximum=8192,
                      step=1,
                      value=512, 
                      label="Max new tokens", 
                      render=False ),
            ],
        examples=[
            ['How to setup a human base on Mars? Give short answer.'],
            ['Explain theory of relativity to me like I’m 8 years old.'],
            ['What is 9,000 * 9,000?'],
            ['Write a pun-filled happy birthday message to my friend Alex.'],
            ['Justify why a penguin might make a good king of the jungle.']
            ],
        cache_examples=False,
                     )
    
    gr.Markdown(LICENSE)
    
if __name__ == "__main__":
    demo.launch(auth=("teste", "teste@teste"), share=True)