File size: 2,798 Bytes
87daab4 22d26a9 f3ffe2b 41c4067 87daab4 f5173ac 1f1a2d1 2c7e0ee 87daab4 2c7e0ee 87daab4 f3ffe2b 1f1a2d1 f3ffe2b 87daab4 22d26a9 ca45251 22d26a9 fdf4060 22d26a9 f755606 22d26a9 c8eb632 01eca0c 7b97ddf f5173ac 87daab4 269c1cf d5bbdfb fa1be49 d5bbdfb 551db13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
import gradio as gr
import matplotlib.pyplot as plt
import io
import numpy as np
from PIL import Image
import requests
import json
import re
import base64
def decode_image(img_b64):
img_data = base64.b64decode(img_b64)
img = Image.open(io.BytesIO(img_data))
return img
def get_image_data(fig):
buf = io.BytesIO()
fig.savefig(buf, format='png')
buf.seek(0)
img = Image.open(buf)
return img
# Execute Python code and generate images
def execute_code(code):
namespace = {}
exec(code, namespace)
fig = namespace.get('fig') # Assume the code generates a matplotlib figure named 'fig'
if fig:
img = get_image_data(fig)
img_byte_arr = io.BytesIO()
img.save(img_byte_arr, format='PNG')
img_byte_arr = img_byte_arr.getvalue()
img_b64 = base64.b64encode(img_byte_arr).decode('utf-8')
return img_b64
else:
raise ValueError("The code did not generate a matplotlib figure named 'fig'")
def gpt_inference(base_url, model, openai_key, prompt):
newprompt = f'Write Python code that does the following: \n\n{prompt}\n\nNote, the code is going to be executed in a Jupyter Python kernel. The code should create a matplotlib figure and assign it to a variable named "fig". The "fig" variable will be used for further processing.\n\nLast instruction, and this is the most important, just return code. No other outputs, as your full response will directly be executed in the kernel.'
data = {
"model": model,
"messages": [
{
"role": "user",
"content": newprompt
}
],
"temperature": 0.7,
}
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {openai_key}",
}
print(f"openai_key:{openai_key}")
response = requests.post(f"{base_url}/v1/chat/completions", headers=headers, data=json.dumps(data))
print("Status code:", response.status_code)
print("Response JSON:", response.json())
code = response.json()["choices"][0]["message"]["content"]
print(f"code:{code}")
img_b64 = execute_code(code)
img = decode_image(img_b64)
return img
iface = gr.Interface(
fn=gpt_inference,
inputs=[gr.components.Textbox(), gr.components.Dropdown(choices=["gpt-3.5-turbo", "gpt-4"], label="Model"),
gr.components.Textbox(), gr.components.Textbox()],
outputs=gr.Image(),
title="SolidUI AI-generated visualization platform",
description="""
AI-generated visualization prototyping and editing platform, support 2D, 3D models, combined with LLM(Large Language Model) for quick editing.
GitHub: https://github.com/CloudOrc/SolidUI
""",
labels=["Base URL", "Model", "OpenAI Key", "Prompt"]
)
iface.launch() |