Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
import gradio as gr
|
2 |
-
import openai
|
3 |
import matplotlib.pyplot as plt
|
4 |
import io
|
5 |
import numpy as np
|
6 |
import base64
|
7 |
from PIL import Image
|
|
|
|
|
8 |
|
9 |
-
#
|
10 |
def get_image_data(plt):
|
11 |
buf = io.BytesIO()
|
12 |
plt.savefig(buf, format='PNG')
|
@@ -14,26 +15,44 @@ def get_image_data(plt):
|
|
14 |
img = Image.open(buf)
|
15 |
return img
|
16 |
|
17 |
-
#
|
18 |
def execute_code(code):
|
19 |
exec(code)
|
20 |
return get_image_data(plt)
|
21 |
|
22 |
-
def gpt_inference(
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
img = execute_code(code)
|
31 |
return img
|
32 |
|
33 |
iface = gr.Interface(
|
34 |
fn=gpt_inference,
|
35 |
-
inputs=["text", gr.inputs.Dropdown(choices=["gpt3.5-turbo", "gpt4"], label="Model"), "text"],
|
36 |
outputs=gr.outputs.Image(type="pil"),
|
37 |
-
input_labels=["
|
38 |
)
|
39 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import matplotlib.pyplot as plt
|
3 |
import io
|
4 |
import numpy as np
|
5 |
import base64
|
6 |
from PIL import Image
|
7 |
+
import requests
|
8 |
+
import json
|
9 |
|
10 |
+
# 将图像转换为 base64,以便在 gradio 中显示
|
11 |
def get_image_data(plt):
|
12 |
buf = io.BytesIO()
|
13 |
plt.savefig(buf, format='PNG')
|
|
|
15 |
img = Image.open(buf)
|
16 |
return img
|
17 |
|
18 |
+
# 执行 Python 代码并生成图像
|
19 |
def execute_code(code):
|
20 |
exec(code)
|
21 |
return get_image_data(plt)
|
22 |
|
23 |
+
def gpt_inference(base_url, model, openai_key, prompt):
|
24 |
+
|
25 |
+
newprompt = f'Write Python code that does the following: \n\n{prompt}\n\nNote, the code is going to be executed in a Jupyter Python kernel.\n\nLast instruction, and this is the most important, just return code. No other outputs, as your full response will directly be executed in the kernel.'
|
26 |
+
|
27 |
+
headers = {
|
28 |
+
'Content-Type': 'application/json',
|
29 |
+
'Authorization': f'Bearer {openai_key}'
|
30 |
+
}
|
31 |
+
|
32 |
+
data = {
|
33 |
+
"model": model,
|
34 |
+
"messages": [
|
35 |
+
{
|
36 |
+
"role": "system",
|
37 |
+
"content": "You are a helpful assistant."
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"role": "user",
|
41 |
+
"content": newprompt
|
42 |
+
}
|
43 |
+
]
|
44 |
+
}
|
45 |
+
|
46 |
+
response = requests.post(f"{base_url}/v1/chat/completions", headers=headers, data=json.dumps(data))
|
47 |
+
response_json = response.json()
|
48 |
+
code = response_json['choices'][0]['message']['content'].strip()
|
49 |
img = execute_code(code)
|
50 |
return img
|
51 |
|
52 |
iface = gr.Interface(
|
53 |
fn=gpt_inference,
|
54 |
+
inputs=["text", gr.inputs.Dropdown(choices=["gpt3.5-turbo", "gpt4"], label="Model"), "text", "text"],
|
55 |
outputs=gr.outputs.Image(type="pil"),
|
56 |
+
input_labels=["Base URL", "Model", "OpenAI Key","Prompt"]
|
57 |
)
|
58 |
iface.launch()
|