Spaces:
Running
on
A10G
Running
on
A10G
File size: 4,984 Bytes
713ec7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
# import argparse, os, sys, glob
# sys.path.append(os.path.split(sys.path[0])[0])
from diffusers import StableDiffusionPipeline
import torch
from free_lunch_utils import register_free_upblock2d, register_free_crossattn_upblock2d
import gradio as gr
from PIL import Image
import torch
from muse import PipelineMuse
from diffusers import AutoPipelineForText2Image, UniPCMultistepScheduler
if sd_options == 'SD1.4':
model_id = "CompVis/stable-diffusion-v1-4"
elif sd_options == 'SD1.5':
model_id = "runwayml/stable-diffusion-v1-5"
elif sd_options == 'SD2.1':
model_id = "stabilityai/stable-diffusion-2-1"
pip_sd = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pip_sd = pip_sd.to("cuda")
pip_freeu = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pip_freeu = pip_freeu.to("cuda")
# -------- freeu block registration
register_free_upblock2d(pipe, b1=1.2, b2=1.4, s1=0.9, s2=0.2)
register_free_crossattn_upblock2d(pipe, b1=1.2, b2=1.4, s1=0.9, s2=0.2)
# -------- freeu block registration
def infer(prompt):
print("Generating SD:")
sd_image = pip_sd(prompt).images[0]
print("Generating FreeU:")
freeu_image = pip_freeu(prompt).images[0]
# First SD, then freeu
images = [sd_image, freeu_image]
return images
examples = [
[
"A small cabin on top of a snowy mountain in the style of Disney, artstation",
],
[
"a monkey doing yoga on the beach",
],
[
"half human half cat, a human cat hybrid",
],
[
"a hedgehog using a calculator",
],
[
"kanye west | diffuse lighting | fantasy | intricate elegant highly detailed lifelike photorealistic digital painting | artstation",
],
[
"astronaut pig",
],
[
"two people shouting at each other",
],
[
"A linked in profile picture of Elon Musk",
],
[
"A man looking out of a rainy window",
],
[
"close up, iron man, eating breakfast in a cabin, symmetrical balance, hyper-realistic --ar 16:9 --style raw"
],
[
'A high tech solarpunk utopia in the Amazon rainforest',
],
[
'A pikachu fine dining with a view to the Eiffel Tower',
],
[
'A mecha robot in a favela in expressionist style',
],
[
'an insect robot preparing a delicious meal',
],
]
css = """
h1 {
text-align: center;
}
#component-0 {
max-width: 730px;
margin: auto;
}
"""
block = gr.Blocks(css=css)
options = ['SD1.4', 'SD1.5', 'SD2.1']
with block:
gr.Markdown("SD vs. FreeU.")
with gr.Group():
with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
with gr.Column():
text = gr.Textbox(
label="Enter your prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
btn = gr.Button("Generate image", scale=0)
with gr.Accordion('FreeU Parameters', open=False):
sd_options = gr.Dropdown(options, label="SD options")
b1 = gr.Slider(label='b1: backbone factor of the first stage block of decoder',
minimum=1,
maximum=1.6,
step=0.01,
value=1)
b2 = gr.Slider(label='b2: backbone factor of the second stage block of decoder',
minimum=1,
maximum=1.6,
step=0.01,
value=1)
s1 = gr.Slider(label='s1: skip factor of the first stage block of decoder',
minimum=0,
maximum=1,
step=0.1,
value=1)
s2 = gr.Slider(label='s2: skip factor of the second stage block of decoder',
minimum=0,
maximum=1,
step=0.1,
value=1)
with gr.Row():
with gr.Column(min_width=256) as c1:
image_1 = gr.Image(interactive=False)
image_1_label = gr.Markdown("SD")
with gr.Column(min_width=256) as c2:
image_2 = gr.Image(interactive=False)
image_2_label = gr.Markdown("FreeU")
ex = gr.Examples(examples=examples, fn=infer, inputs=[text], outputs=[image_1, image_2], cache_examples=False)
ex.dataset.headers = [""]
text.submit(infer, inputs=[text], outputs=[image_1, image_2])
btn.click(infer, inputs=[text], outputs=[image_1, image_2])
block.launch()
|