Spaces:
Sleeping
Sleeping
ChenyangSi
commited on
Commit
•
713ec7d
1
Parent(s):
453154b
Upload 3 files
Browse files- __init__.py +1 -0
- app.py +162 -0
- free_lunch_utils.py +304 -0
__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from free_lunch_utils import register_upblock2d, register_free_upblock2d, register_crossattn_upblock2d, register_free_crossattn_upblock2d
|
app.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import argparse, os, sys, glob
|
2 |
+
# sys.path.append(os.path.split(sys.path[0])[0])
|
3 |
+
|
4 |
+
from diffusers import StableDiffusionPipeline
|
5 |
+
import torch
|
6 |
+
from free_lunch_utils import register_free_upblock2d, register_free_crossattn_upblock2d
|
7 |
+
|
8 |
+
import gradio as gr
|
9 |
+
from PIL import Image
|
10 |
+
import torch
|
11 |
+
from muse import PipelineMuse
|
12 |
+
from diffusers import AutoPipelineForText2Image, UniPCMultistepScheduler
|
13 |
+
|
14 |
+
|
15 |
+
if sd_options == 'SD1.4':
|
16 |
+
model_id = "CompVis/stable-diffusion-v1-4"
|
17 |
+
elif sd_options == 'SD1.5':
|
18 |
+
model_id = "runwayml/stable-diffusion-v1-5"
|
19 |
+
elif sd_options == 'SD2.1':
|
20 |
+
model_id = "stabilityai/stable-diffusion-2-1"
|
21 |
+
|
22 |
+
pip_sd = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
23 |
+
pip_sd = pip_sd.to("cuda")
|
24 |
+
|
25 |
+
|
26 |
+
pip_freeu = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
27 |
+
pip_freeu = pip_freeu.to("cuda")
|
28 |
+
# -------- freeu block registration
|
29 |
+
register_free_upblock2d(pipe, b1=1.2, b2=1.4, s1=0.9, s2=0.2)
|
30 |
+
register_free_crossattn_upblock2d(pipe, b1=1.2, b2=1.4, s1=0.9, s2=0.2)
|
31 |
+
# -------- freeu block registration
|
32 |
+
|
33 |
+
|
34 |
+
def infer(prompt):
|
35 |
+
|
36 |
+
print("Generating SD:")
|
37 |
+
sd_image = pip_sd(prompt).images[0]
|
38 |
+
|
39 |
+
print("Generating FreeU:")
|
40 |
+
freeu_image = pip_freeu(prompt).images[0]
|
41 |
+
|
42 |
+
# First SD, then freeu
|
43 |
+
images = [sd_image, freeu_image]
|
44 |
+
|
45 |
+
return images
|
46 |
+
|
47 |
+
|
48 |
+
examples = [
|
49 |
+
[
|
50 |
+
"A small cabin on top of a snowy mountain in the style of Disney, artstation",
|
51 |
+
],
|
52 |
+
[
|
53 |
+
"a monkey doing yoga on the beach",
|
54 |
+
],
|
55 |
+
[
|
56 |
+
"half human half cat, a human cat hybrid",
|
57 |
+
],
|
58 |
+
[
|
59 |
+
"a hedgehog using a calculator",
|
60 |
+
],
|
61 |
+
[
|
62 |
+
"kanye west | diffuse lighting | fantasy | intricate elegant highly detailed lifelike photorealistic digital painting | artstation",
|
63 |
+
],
|
64 |
+
[
|
65 |
+
"astronaut pig",
|
66 |
+
],
|
67 |
+
[
|
68 |
+
"two people shouting at each other",
|
69 |
+
],
|
70 |
+
[
|
71 |
+
"A linked in profile picture of Elon Musk",
|
72 |
+
],
|
73 |
+
[
|
74 |
+
"A man looking out of a rainy window",
|
75 |
+
],
|
76 |
+
[
|
77 |
+
"close up, iron man, eating breakfast in a cabin, symmetrical balance, hyper-realistic --ar 16:9 --style raw"
|
78 |
+
],
|
79 |
+
[
|
80 |
+
'A high tech solarpunk utopia in the Amazon rainforest',
|
81 |
+
],
|
82 |
+
[
|
83 |
+
'A pikachu fine dining with a view to the Eiffel Tower',
|
84 |
+
],
|
85 |
+
[
|
86 |
+
'A mecha robot in a favela in expressionist style',
|
87 |
+
],
|
88 |
+
[
|
89 |
+
'an insect robot preparing a delicious meal',
|
90 |
+
],
|
91 |
+
]
|
92 |
+
|
93 |
+
|
94 |
+
css = """
|
95 |
+
h1 {
|
96 |
+
text-align: center;
|
97 |
+
}
|
98 |
+
|
99 |
+
#component-0 {
|
100 |
+
max-width: 730px;
|
101 |
+
margin: auto;
|
102 |
+
}
|
103 |
+
"""
|
104 |
+
|
105 |
+
block = gr.Blocks(css=css)
|
106 |
+
|
107 |
+
options = ['SD1.4', 'SD1.5', 'SD2.1']
|
108 |
+
|
109 |
+
with block:
|
110 |
+
gr.Markdown("SD vs. FreeU.")
|
111 |
+
with gr.Group():
|
112 |
+
with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
|
113 |
+
with gr.Column():
|
114 |
+
text = gr.Textbox(
|
115 |
+
label="Enter your prompt",
|
116 |
+
show_label=False,
|
117 |
+
max_lines=1,
|
118 |
+
placeholder="Enter your prompt",
|
119 |
+
container=False,
|
120 |
+
)
|
121 |
+
btn = gr.Button("Generate image", scale=0)
|
122 |
+
|
123 |
+
with gr.Accordion('FreeU Parameters', open=False):
|
124 |
+
sd_options = gr.Dropdown(options, label="SD options")
|
125 |
+
|
126 |
+
b1 = gr.Slider(label='b1: backbone factor of the first stage block of decoder',
|
127 |
+
minimum=1,
|
128 |
+
maximum=1.6,
|
129 |
+
step=0.01,
|
130 |
+
value=1)
|
131 |
+
b2 = gr.Slider(label='b2: backbone factor of the second stage block of decoder',
|
132 |
+
minimum=1,
|
133 |
+
maximum=1.6,
|
134 |
+
step=0.01,
|
135 |
+
value=1)
|
136 |
+
s1 = gr.Slider(label='s1: skip factor of the first stage block of decoder',
|
137 |
+
minimum=0,
|
138 |
+
maximum=1,
|
139 |
+
step=0.1,
|
140 |
+
value=1)
|
141 |
+
s2 = gr.Slider(label='s2: skip factor of the second stage block of decoder',
|
142 |
+
minimum=0,
|
143 |
+
maximum=1,
|
144 |
+
step=0.1,
|
145 |
+
value=1)
|
146 |
+
|
147 |
+
with gr.Row():
|
148 |
+
with gr.Column(min_width=256) as c1:
|
149 |
+
image_1 = gr.Image(interactive=False)
|
150 |
+
image_1_label = gr.Markdown("SD")
|
151 |
+
with gr.Column(min_width=256) as c2:
|
152 |
+
image_2 = gr.Image(interactive=False)
|
153 |
+
image_2_label = gr.Markdown("FreeU")
|
154 |
+
|
155 |
+
|
156 |
+
ex = gr.Examples(examples=examples, fn=infer, inputs=[text], outputs=[image_1, image_2], cache_examples=False)
|
157 |
+
ex.dataset.headers = [""]
|
158 |
+
|
159 |
+
text.submit(infer, inputs=[text], outputs=[image_1, image_2])
|
160 |
+
btn.click(infer, inputs=[text], outputs=[image_1, image_2])
|
161 |
+
|
162 |
+
block.launch()
|
free_lunch_utils.py
ADDED
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.fft as fft
|
3 |
+
from diffusers.models.unet_2d_condition import logger
|
4 |
+
from diffusers.utils import is_torch_version
|
5 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
6 |
+
|
7 |
+
|
8 |
+
def isinstance_str(x: object, cls_name: str):
|
9 |
+
"""
|
10 |
+
Checks whether x has any class *named* cls_name in its ancestry.
|
11 |
+
Doesn't require access to the class's implementation.
|
12 |
+
|
13 |
+
Useful for patching!
|
14 |
+
"""
|
15 |
+
|
16 |
+
for _cls in x.__class__.__mro__:
|
17 |
+
if _cls.__name__ == cls_name:
|
18 |
+
return True
|
19 |
+
|
20 |
+
return False
|
21 |
+
|
22 |
+
|
23 |
+
def Fourier_filter(x, threshold, scale):
|
24 |
+
dtype = x.dtype
|
25 |
+
x = x.type(torch.float32)
|
26 |
+
# FFT
|
27 |
+
x_freq = fft.fftn(x, dim=(-2, -1))
|
28 |
+
x_freq = fft.fftshift(x_freq, dim=(-2, -1))
|
29 |
+
|
30 |
+
B, C, H, W = x_freq.shape
|
31 |
+
mask = torch.ones((B, C, H, W)).cuda()
|
32 |
+
|
33 |
+
crow, ccol = H // 2, W //2
|
34 |
+
mask[..., crow - threshold:crow + threshold, ccol - threshold:ccol + threshold] = scale
|
35 |
+
x_freq = x_freq * mask
|
36 |
+
|
37 |
+
# IFFT
|
38 |
+
x_freq = fft.ifftshift(x_freq, dim=(-2, -1))
|
39 |
+
x_filtered = fft.ifftn(x_freq, dim=(-2, -1)).real
|
40 |
+
|
41 |
+
x_filtered = x_filtered.type(dtype)
|
42 |
+
return x_filtered
|
43 |
+
|
44 |
+
|
45 |
+
def register_upblock2d(model):
|
46 |
+
def up_forward(self):
|
47 |
+
def forward(hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
|
48 |
+
for resnet in self.resnets:
|
49 |
+
# pop res hidden states
|
50 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
51 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
52 |
+
#print(f"in upblock2d, hidden states shape: {hidden_states.shape}")
|
53 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
54 |
+
|
55 |
+
if self.training and self.gradient_checkpointing:
|
56 |
+
|
57 |
+
def create_custom_forward(module):
|
58 |
+
def custom_forward(*inputs):
|
59 |
+
return module(*inputs)
|
60 |
+
|
61 |
+
return custom_forward
|
62 |
+
|
63 |
+
if is_torch_version(">=", "1.11.0"):
|
64 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
65 |
+
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
|
66 |
+
)
|
67 |
+
else:
|
68 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
69 |
+
create_custom_forward(resnet), hidden_states, temb
|
70 |
+
)
|
71 |
+
else:
|
72 |
+
hidden_states = resnet(hidden_states, temb)
|
73 |
+
|
74 |
+
if self.upsamplers is not None:
|
75 |
+
for upsampler in self.upsamplers:
|
76 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
77 |
+
|
78 |
+
return hidden_states
|
79 |
+
|
80 |
+
return forward
|
81 |
+
|
82 |
+
for i, upsample_block in enumerate(model.unet.up_blocks):
|
83 |
+
if isinstance_str(upsample_block, "UpBlock2D"):
|
84 |
+
upsample_block.forward = up_forward(upsample_block)
|
85 |
+
|
86 |
+
|
87 |
+
def register_free_upblock2d(model, b1=1.2, b2=1.4, s1=0.9, s2=0.2):
|
88 |
+
def up_forward(self):
|
89 |
+
def forward(hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
|
90 |
+
for resnet in self.resnets:
|
91 |
+
# pop res hidden states
|
92 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
93 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
94 |
+
#print(f"in free upblock2d, hidden states shape: {hidden_states.shape}")
|
95 |
+
|
96 |
+
# --------------- FreeU code -----------------------
|
97 |
+
# Only operate on the first two stages
|
98 |
+
if hidden_states.shape[1] == 1280:
|
99 |
+
hidden_states[:,:640] = hidden_states[:,:640] * self.b1
|
100 |
+
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s1)
|
101 |
+
if hidden_states.shape[1] == 640:
|
102 |
+
hidden_states[:,:320] = hidden_states[:,:320] * self.b2
|
103 |
+
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s2)
|
104 |
+
# ---------------------------------------------------------
|
105 |
+
|
106 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
107 |
+
|
108 |
+
if self.training and self.gradient_checkpointing:
|
109 |
+
|
110 |
+
def create_custom_forward(module):
|
111 |
+
def custom_forward(*inputs):
|
112 |
+
return module(*inputs)
|
113 |
+
|
114 |
+
return custom_forward
|
115 |
+
|
116 |
+
if is_torch_version(">=", "1.11.0"):
|
117 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
118 |
+
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
|
119 |
+
)
|
120 |
+
else:
|
121 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
122 |
+
create_custom_forward(resnet), hidden_states, temb
|
123 |
+
)
|
124 |
+
else:
|
125 |
+
hidden_states = resnet(hidden_states, temb)
|
126 |
+
|
127 |
+
if self.upsamplers is not None:
|
128 |
+
for upsampler in self.upsamplers:
|
129 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
130 |
+
|
131 |
+
return hidden_states
|
132 |
+
|
133 |
+
return forward
|
134 |
+
|
135 |
+
for i, upsample_block in enumerate(model.unet.up_blocks):
|
136 |
+
if isinstance_str(upsample_block, "UpBlock2D"):
|
137 |
+
upsample_block.forward = up_forward(upsample_block)
|
138 |
+
setattr(upsample_block, 'b1', b1)
|
139 |
+
setattr(upsample_block, 'b2', b2)
|
140 |
+
setattr(upsample_block, 's1', s1)
|
141 |
+
setattr(upsample_block, 's2', s2)
|
142 |
+
|
143 |
+
|
144 |
+
def register_crossattn_upblock2d(model):
|
145 |
+
def up_forward(self):
|
146 |
+
def forward(
|
147 |
+
hidden_states: torch.FloatTensor,
|
148 |
+
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
149 |
+
temb: Optional[torch.FloatTensor] = None,
|
150 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
151 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
152 |
+
upsample_size: Optional[int] = None,
|
153 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
154 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
155 |
+
):
|
156 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
157 |
+
# pop res hidden states
|
158 |
+
#print(f"in crossatten upblock2d, hidden states shape: {hidden_states.shape}")
|
159 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
160 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
161 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
162 |
+
|
163 |
+
if self.training and self.gradient_checkpointing:
|
164 |
+
|
165 |
+
def create_custom_forward(module, return_dict=None):
|
166 |
+
def custom_forward(*inputs):
|
167 |
+
if return_dict is not None:
|
168 |
+
return module(*inputs, return_dict=return_dict)
|
169 |
+
else:
|
170 |
+
return module(*inputs)
|
171 |
+
|
172 |
+
return custom_forward
|
173 |
+
|
174 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
175 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
176 |
+
create_custom_forward(resnet),
|
177 |
+
hidden_states,
|
178 |
+
temb,
|
179 |
+
**ckpt_kwargs,
|
180 |
+
)
|
181 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
182 |
+
create_custom_forward(attn, return_dict=False),
|
183 |
+
hidden_states,
|
184 |
+
encoder_hidden_states,
|
185 |
+
None, # timestep
|
186 |
+
None, # class_labels
|
187 |
+
cross_attention_kwargs,
|
188 |
+
attention_mask,
|
189 |
+
encoder_attention_mask,
|
190 |
+
**ckpt_kwargs,
|
191 |
+
)[0]
|
192 |
+
else:
|
193 |
+
hidden_states = resnet(hidden_states, temb)
|
194 |
+
hidden_states = attn(
|
195 |
+
hidden_states,
|
196 |
+
encoder_hidden_states=encoder_hidden_states,
|
197 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
198 |
+
attention_mask=attention_mask,
|
199 |
+
encoder_attention_mask=encoder_attention_mask,
|
200 |
+
return_dict=False,
|
201 |
+
)[0]
|
202 |
+
|
203 |
+
if self.upsamplers is not None:
|
204 |
+
for upsampler in self.upsamplers:
|
205 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
206 |
+
|
207 |
+
return hidden_states
|
208 |
+
|
209 |
+
return forward
|
210 |
+
|
211 |
+
for i, upsample_block in enumerate(model.unet.up_blocks):
|
212 |
+
if isinstance_str(upsample_block, "CrossAttnUpBlock2D"):
|
213 |
+
upsample_block.forward = up_forward(upsample_block)
|
214 |
+
|
215 |
+
|
216 |
+
def register_free_crossattn_upblock2d(model, b1=1.2, b2=1.4, s1=0.9, s2=0.2):
|
217 |
+
def up_forward(self):
|
218 |
+
def forward(
|
219 |
+
hidden_states: torch.FloatTensor,
|
220 |
+
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
221 |
+
temb: Optional[torch.FloatTensor] = None,
|
222 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
223 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
224 |
+
upsample_size: Optional[int] = None,
|
225 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
226 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
227 |
+
):
|
228 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
229 |
+
# pop res hidden states
|
230 |
+
#print(f"in free crossatten upblock2d, hidden states shape: {hidden_states.shape}")
|
231 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
232 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
233 |
+
|
234 |
+
# --------------- FreeU code -----------------------
|
235 |
+
# Only operate on the first two stages
|
236 |
+
if hidden_states.shape[1] == 1280:
|
237 |
+
hidden_states[:,:640] = hidden_states[:,:640] * self.b1
|
238 |
+
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s1)
|
239 |
+
if hidden_states.shape[1] == 640:
|
240 |
+
hidden_states[:,:320] = hidden_states[:,:320] * self.b2
|
241 |
+
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s2)
|
242 |
+
# ---------------------------------------------------------
|
243 |
+
|
244 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
245 |
+
|
246 |
+
if self.training and self.gradient_checkpointing:
|
247 |
+
|
248 |
+
def create_custom_forward(module, return_dict=None):
|
249 |
+
def custom_forward(*inputs):
|
250 |
+
if return_dict is not None:
|
251 |
+
return module(*inputs, return_dict=return_dict)
|
252 |
+
else:
|
253 |
+
return module(*inputs)
|
254 |
+
|
255 |
+
return custom_forward
|
256 |
+
|
257 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
258 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
259 |
+
create_custom_forward(resnet),
|
260 |
+
hidden_states,
|
261 |
+
temb,
|
262 |
+
**ckpt_kwargs,
|
263 |
+
)
|
264 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
265 |
+
create_custom_forward(attn, return_dict=False),
|
266 |
+
hidden_states,
|
267 |
+
encoder_hidden_states,
|
268 |
+
None, # timestep
|
269 |
+
None, # class_labels
|
270 |
+
cross_attention_kwargs,
|
271 |
+
attention_mask,
|
272 |
+
encoder_attention_mask,
|
273 |
+
**ckpt_kwargs,
|
274 |
+
)[0]
|
275 |
+
else:
|
276 |
+
hidden_states = resnet(hidden_states, temb)
|
277 |
+
# hidden_states = attn(
|
278 |
+
# hidden_states,
|
279 |
+
# encoder_hidden_states=encoder_hidden_states,
|
280 |
+
# cross_attention_kwargs=cross_attention_kwargs,
|
281 |
+
# encoder_attention_mask=encoder_attention_mask,
|
282 |
+
# return_dict=False,
|
283 |
+
# )[0]
|
284 |
+
hidden_states = attn(
|
285 |
+
hidden_states,
|
286 |
+
encoder_hidden_states=encoder_hidden_states,
|
287 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
288 |
+
)[0]
|
289 |
+
|
290 |
+
if self.upsamplers is not None:
|
291 |
+
for upsampler in self.upsamplers:
|
292 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
293 |
+
|
294 |
+
return hidden_states
|
295 |
+
|
296 |
+
return forward
|
297 |
+
|
298 |
+
for i, upsample_block in enumerate(model.unet.up_blocks):
|
299 |
+
if isinstance_str(upsample_block, "CrossAttnUpBlock2D"):
|
300 |
+
upsample_block.forward = up_forward(upsample_block)
|
301 |
+
setattr(upsample_block, 'b1', b1)
|
302 |
+
setattr(upsample_block, 'b2', b2)
|
303 |
+
setattr(upsample_block, 's1', s1)
|
304 |
+
setattr(upsample_block, 's2', s2)
|