Spaces:
Sleeping
Sleeping
import streamlit as st | |
from langchain.chains import ConversationChain | |
from hugchat import hugchat | |
from hugchat.login import Login | |
st.set_page_config(page_title="HugChat - An LLM-powered Streamlit app") | |
st.title('π€π¬ HugChat App') | |
# Hugging Face Credentials | |
with st.sidebar: | |
st.header('Hugging Face Login') | |
hf_email = st.text_input('Enter E-mail:', type='password') | |
hf_pass = st.text_input('Enter password:', type='password') | |
# Store AI generated responses | |
if "messages" not in st.session_state.keys(): | |
st.session_state.messages = [{"role": "assistant", "content": "I'm HugChat, How may I help you?"}] | |
# Display existing chat messages | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.write(message["content"]) | |
# Function for generating LLM response | |
def generate_response(prompt, email, passwd): | |
# Hugging Face Login | |
sign = Login(email, passwd) | |
cookies = sign.login() | |
sign.saveCookies() | |
# Create ChatBot | |
chatbot = hugchat.ChatBot(cookies=cookies.get_dict()) | |
chain = ConversationChain(llm=chatbot) | |
response = chain.run(input=prompt) | |
return response | |
# Prompt for user input and save | |
if prompt := st.chat_input(): | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
with st.chat_message("user"): | |
st.write(prompt) | |
# If last message is not from assistant, we need to generate a new response | |
if st.session_state.messages[-1]["role"] != "assistant": | |
# Call LLM | |
with st.chat_message("assistant"): | |
with st.spinner("Thinking..."): | |
response = generate_response(prompt, hf_email, hf_pass) | |
st.write(response) | |
message = {"role": "assistant", "content": response} | |
st.session_state.messages.append(message) | |