Canstralian commited on
Commit
dd18e32
·
verified ·
1 Parent(s): 777ef1d

Upload 14 files

Browse files
.devcontainer/devcontainer.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "Python 3",
3
+ // Or use a Dockerfile or Docker Compose file. More info: https://containers.dev/guide/dockerfile
4
+ "image": "mcr.microsoft.com/devcontainers/python:1-3.11-bullseye",
5
+ "customizations": {
6
+ "codespaces": {
7
+ "openFiles": [
8
+ "README.md",
9
+ "streamlit_app.py"
10
+ ]
11
+ },
12
+ "vscode": {
13
+ "settings": {},
14
+ "extensions": [
15
+ "ms-python.python",
16
+ "ms-python.vscode-pylance"
17
+ ]
18
+ }
19
+ },
20
+ "updateContentCommand": "[ -f packages.txt ] && sudo apt update && sudo apt upgrade -y && sudo xargs apt install -y <packages.txt; [ -f requirements.txt ] && pip3 install --user -r requirements.txt; pip3 install --user streamlit; echo '✅ Packages installed and Requirements met'",
21
+ "postAttachCommand": {
22
+ "server": "streamlit run streamlit_app.py --server.enableCORS false --server.enableXsrfProtection false"
23
+ },
24
+ "portsAttributes": {
25
+ "8501": {
26
+ "label": "Application",
27
+ "onAutoForward": "openPreview"
28
+ }
29
+ },
30
+ "forwardPorts": [
31
+ 8501
32
+ ]
33
+ }
README.md CHANGED
@@ -1,15 +1,3 @@
1
- ---
2
- title: Streamlit Huggingface
3
- emoji: 🏢
4
- colorFrom: purple
5
- colorTo: red
6
- sdk: streamlit
7
- sdk_version: 1.41.1
8
- app_file: app.py
9
- pinned: false
10
- license: mit
11
- ---
12
-
13
  # 🤗💬 HugChat App
14
  ```
15
  This app is an LLM-powered chatbot built using Streamlit and HugChat.
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # 🤗💬 HugChat App
2
  ```
3
  This app is an LLM-powered chatbot built using Streamlit and HugChat.
app_v1.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from streamlit_chat import message
3
+ from streamlit_extras.colored_header import colored_header
4
+ from streamlit_extras.add_vertical_space import add_vertical_space
5
+ from hugchat import hugchat
6
+ import os
7
+
8
+ # Streamlit page config
9
+ st.set_page_config(page_title="HugChat - An LLM-powered Streamlit app")
10
+
11
+ # Sidebar contents
12
+ with st.sidebar:
13
+ st.title('🤗💬 HugChat App')
14
+ st.markdown('''
15
+ ## About
16
+ This app is an LLM-powered chatbot built using:
17
+ - [Streamlit](https://streamlit.io/)
18
+ - [HugChat](https://github.com/Soulter/hugging-chat-api)
19
+ - [OpenAssistant/oasst-sft-6-llama-30b-xor](https://huggingface.co/OpenAssistant/oasst-sft-6-llama-30b-xor) LLM model
20
+
21
+ 💡 Note: No API key required!
22
+ ''')
23
+ add_vertical_space(5)
24
+ st.write('Made with ❤️ by [Data Professor](https://youtube.com/dataprofessor)')
25
+
26
+ # Initialize chatbot and session state
27
+ if 'chatbot' not in st.session_state:
28
+ # Create ChatBot instance
29
+ st.session_state.chatbot = hugchat.ChatBot()
30
+
31
+ if 'generated' not in st.session_state:
32
+ st.session_state['generated'] = ["I'm HugChat, How may I help you?"]
33
+
34
+ if 'past' not in st.session_state:
35
+ st.session_state['past'] = ['Hi!']
36
+
37
+ # Layout of input/response containers
38
+ input_container = st.container()
39
+ colored_header(label='', description='', color_name='blue-30')
40
+ response_container = st.container()
41
+
42
+ # User input
43
+ def get_text():
44
+ return st.text_input("You: ", "", key="input")
45
+
46
+ with input_container:
47
+ user_input = get_text()
48
+
49
+ # AI Response Generation
50
+ def generate_response(prompt):
51
+ try:
52
+ response = st.session_state.chatbot.chat(prompt)
53
+ return response
54
+ except Exception as e:
55
+ return f"An error occurred: {e}"
56
+
57
+ # Display conversation
58
+ with response_container:
59
+ if user_input:
60
+ response = generate_response(user_input)
61
+ st.session_state.past.append(user_input)
62
+ st.session_state.generated.append(response)
63
+
64
+ if st.session_state['generated']:
65
+ for i in range(len(st.session_state['generated'])):
66
+ message(st.session_state['past'][i], is_user=True, key=f"{i}_user")
67
+ message(st.session_state["generated"][i], key=f"{i}")
app_v2.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from streamlit_chat import message
3
+ from streamlit_extras.colored_header import colored_header
4
+ from streamlit_extras.add_vertical_space import add_vertical_space
5
+ from hugchat import hugchat
6
+ from hugchat.login import Login
7
+
8
+ st.set_page_config(page_title="HugChat - An LLM-powered Streamlit app")
9
+
10
+ # Sidebar contents
11
+ with st.sidebar:
12
+ st.title('🤗💬 HugChat App')
13
+
14
+ st.header('Hugging Face Login')
15
+ hf_email = st.text_input('Enter E-mail:', type='password')
16
+ hf_pass = st.text_input('Enter password:', type='password')
17
+
18
+ st.markdown('''
19
+ ## About
20
+ This app is an LLM-powered chatbot built using:
21
+ - [Streamlit](https://streamlit.io/)
22
+ - [HugChat](https://github.com/Soulter/hugging-chat-api)
23
+ - [OpenAssistant/oasst-sft-6-llama-30b-xor](https://huggingface.co/OpenAssistant/oasst-sft-6-llama-30b-xor) LLM model
24
+
25
+ ''')
26
+ add_vertical_space(5)
27
+ st.write('Made with ❤️ by [Data Professor](https://youtube.com/dataprofessor)')
28
+
29
+ # Generate empty lists for generated and past.
30
+ ## generated stores AI generated responses
31
+ if 'generated' not in st.session_state:
32
+ st.session_state['generated'] = ["I'm HugChat, How may I help you?"]
33
+ ## past stores User's questions
34
+ if 'past' not in st.session_state:
35
+ st.session_state['past'] = ['Hi!']
36
+
37
+ # Layout of input/response containers
38
+ input_container = st.container()
39
+ colored_header(label='', description='', color_name='blue-30')
40
+ response_container = st.container()
41
+
42
+ # User input
43
+ ## Function for taking user provided prompt as input
44
+ def get_text():
45
+ input_text = st.text_input("You: ", "", key="input")
46
+ return input_text
47
+ ## Applying the user input box
48
+ with input_container:
49
+ user_input = get_text()
50
+
51
+ # Response output
52
+ ## Function for taking user prompt as input followed by producing AI generated responses
53
+ def generate_response(prompt, email, passwd):
54
+ # Hugging Face Login
55
+ sign = Login(email, passwd)
56
+ cookies = sign.login()
57
+ sign.saveCookies()
58
+ # Create ChatBot
59
+ chatbot = hugchat.ChatBot(cookies=cookies.get_dict())
60
+ response = chatbot.chat(prompt)
61
+ return response
62
+
63
+ ## Conditional display of AI generated responses as a function of user provided prompts
64
+ with response_container:
65
+ if user_input and hf_email and hf_pass:
66
+ response = generate_response(user_input, hf_email, hf_pass)
67
+ st.session_state.past.append(user_input)
68
+ st.session_state.generated.append(response)
69
+
70
+ if st.session_state['generated']:
71
+ for i in range(len(st.session_state['generated'])):
72
+ message(st.session_state['past'][i], is_user=True, key=str(i) + '_user')
73
+ message(st.session_state["generated"][i], key=str(i))
app_v3.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from hugchat import hugchat
3
+ from hugchat.login import Login
4
+ import os
5
+
6
+ # App title
7
+ st.set_page_config(page_title="🤗💬 HugChat")
8
+
9
+ # Hugging Face Credentials
10
+ with st.sidebar:
11
+ st.title('🤗💬 HugChat')
12
+ if ('EMAIL' in st.secrets) and ('PASS' in st.secrets):
13
+ st.success('HuggingFace Login credentials already provided!', icon='✅')
14
+ hf_email = st.secrets['EMAIL']
15
+ hf_pass = st.secrets['PASS']
16
+ else:
17
+ hf_email = st.text_input('Enter E-mail:', type='password')
18
+ hf_pass = st.text_input('Enter password:', type='password')
19
+ if not (hf_email and hf_pass):
20
+ st.warning('Please enter your credentials!', icon='⚠️')
21
+ else:
22
+ st.success('Proceed to entering your prompt message!', icon='👉')
23
+ st.markdown('📖 Learn how to build this app in this [blog](https://blog.streamlit.io/how-to-build-an-llm-powered-chatbot-with-streamlit/)!')
24
+
25
+ # Store LLM generated responses
26
+ if "messages" not in st.session_state:
27
+ st.session_state.messages = [{"role": "assistant", "content": "How may I assist you today?"}]
28
+
29
+ # Display or clear chat messages
30
+ for message in st.session_state.messages:
31
+ with st.chat_message(message["role"]):
32
+ st.write(message["content"])
33
+
34
+ def clear_chat_history():
35
+ st.session_state.messages = [{"role": "assistant", "content": "How may I assist you today?"}]
36
+ st.sidebar.button('Clear Chat History', on_click=clear_chat_history)
37
+
38
+ # Function for generating LLM response
39
+ def generate_response(prompt_input, email, passwd):
40
+ # Hugging Face Login
41
+ sign = Login(email, passwd)
42
+ cookies = sign.login()
43
+ # Create ChatBot
44
+ chatbot = hugchat.ChatBot(cookies=cookies.get_dict())
45
+
46
+ for dict_message in st.session_state.messages:
47
+ string_dialogue = "You are a helpful assistant."
48
+ if dict_message["role"] == "user":
49
+ string_dialogue += "User: " + dict_message["content"] + "\n\n"
50
+ else:
51
+ string_dialogue += "Assistant: " + dict_message["content"] + "\n\n"
52
+
53
+ prompt = f"{string_dialogue} {prompt_input} Assistant: "
54
+ return chatbot.chat(prompt)
55
+
56
+ # User-provided prompt
57
+ if prompt := st.chat_input(disabled=not (hf_email and hf_pass)):
58
+ st.session_state.messages.append({"role": "user", "content": prompt})
59
+ with st.chat_message("user"):
60
+ st.write(prompt)
61
+
62
+ # Generate a new response if last message is not from assistant
63
+ if st.session_state.messages[-1]["role"] != "assistant":
64
+ with st.chat_message("assistant"):
65
+ with st.spinner("Thinking..."):
66
+ response = generate_response(prompt, hf_email, hf_pass)
67
+ st.write(response)
68
+ message = {"role": "assistant", "content": response}
69
+ st.session_state.messages.append(message)
img/placeholder.md ADDED
@@ -0,0 +1 @@
 
 
1
+
img/streamlit.png ADDED
langchain_app.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from langchain.chains import ConversationChain
3
+ from hugchat import hugchat
4
+ from hugchat.login import Login
5
+
6
+ st.set_page_config(page_title="HugChat - An LLM-powered Streamlit app")
7
+ st.title('🤗💬 HugChat App')
8
+
9
+ # Hugging Face Credentials
10
+ with st.sidebar:
11
+ st.header('Hugging Face Login')
12
+ hf_email = st.text_input('Enter E-mail:', type='password')
13
+ hf_pass = st.text_input('Enter password:', type='password')
14
+
15
+ # Store AI generated responses
16
+ if "messages" not in st.session_state.keys():
17
+ st.session_state.messages = [{"role": "assistant", "content": "I'm HugChat, How may I help you?"}]
18
+
19
+ # Display existing chat messages
20
+ for message in st.session_state.messages:
21
+ with st.chat_message(message["role"]):
22
+ st.write(message["content"])
23
+
24
+ # Function for generating LLM response
25
+ def generate_response(prompt, email, passwd):
26
+ # Hugging Face Login
27
+ sign = Login(email, passwd)
28
+ cookies = sign.login()
29
+ sign.saveCookies()
30
+ # Create ChatBot
31
+ chatbot = hugchat.ChatBot(cookies=cookies.get_dict())
32
+ chain = ConversationChain(llm=chatbot)
33
+ response = chain.run(input=prompt)
34
+ return response
35
+
36
+ # Prompt for user input and save
37
+ if prompt := st.chat_input():
38
+ st.session_state.messages.append({"role": "user", "content": prompt})
39
+ with st.chat_message("user"):
40
+ st.write(prompt)
41
+
42
+ # If last message is not from assistant, we need to generate a new response
43
+ if st.session_state.messages[-1]["role"] != "assistant":
44
+ # Call LLM
45
+ with st.chat_message("assistant"):
46
+ with st.spinner("Thinking..."):
47
+ response = generate_response(prompt, hf_email, hf_pass)
48
+ st.write(response)
49
+
50
+ message = {"role": "assistant", "content": response}
51
+ st.session_state.messages.append(message)
notebook/hf.env ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ EMAIL='[email protected]'
2
+ PASS='xxxxxxxxxxx'
streamlit.png ADDED