Spaces:
Sleeping
Sleeping
File size: 13,724 Bytes
770d5ac 24b149e 770d5ac e5afc54 770d5ac e5afc54 770d5ac 24b149e 770d5ac e8b6e14 770d5ac e5afc54 770d5ac e8b6e14 770d5ac e5afc54 770d5ac e5afc54 770d5ac e5afc54 770d5ac e5afc54 770d5ac e5afc54 770d5ac e5afc54 770d5ac e5afc54 770d5ac e5afc54 770d5ac e5afc54 770d5ac e5afc54 770d5ac e5afc54 770d5ac e8b6e14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
import os
import logging
from typing import List, Dict
import torch
import gradio as gr
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain.llms import HuggingFacePipeline
from langchain_community.document_loaders import PyPDFLoader
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import spaces
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Get HuggingFace token from environment variables
hf_token = os.environ.get('HUGGINGFACE_TOKEN') or os.environ.get('HF_TOKEN')
if not hf_token:
logger.error("No Hugging Face token found in environment variables")
logger.error("Please set either HUGGINGFACE_TOKEN or HF_TOKEN in your Space settings")
raise ValueError("Missing Hugging Face token. Please configure it in the Space settings under Repository Secrets.")
# Constants
MODEL_NAME = "meta-llama/Llama-2-7b-chat-hf"
KNOWLEDGE_BASE_DIR = "."
class DocumentLoader:
"""Class to manage PDF document loading."""
@staticmethod
def load_pdfs(directory_path: str) -> List:
documents = []
pdf_files = [
f for f in os.listdir(directory_path)
if f.endswith('.pdf') and
(f.startswith('valencia') or 'fislac' in f.lower() or 'Valencia' in f)
]
if not pdf_files:
logger.warning(f"No matching PDF files found in {directory_path}")
return documents
for pdf_file in pdf_files:
pdf_path = os.path.join(directory_path, pdf_file)
try:
loader = PyPDFLoader(pdf_path)
pdf_documents = loader.load()
for doc in pdf_documents:
doc.metadata.update({
'title': pdf_file,
'type': 'technical' if 'valencia' in pdf_file.lower() or 'Valencia' in pdf_file else 'qa',
'language': 'en',
'page': doc.metadata.get('page', 0)
})
documents.append(doc)
logger.info(f"Document {pdf_file} loaded successfully")
except Exception as e:
logger.error(f"Error loading {pdf_file}: {str(e)}")
return documents
class TextProcessor:
"""Class to process and split text into chunks."""
def __init__(self):
self.technical_splitter = RecursiveCharacterTextSplitter(
chunk_size=800,
chunk_overlap=200,
separators=["\n\n", "\n", ". ", " ", ""],
length_function=len
)
self.qa_splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=100,
separators=["\n\n", "\n", ". ", " ", ""],
length_function=len
)
def process_documents(self, documents: List) -> List:
if not documents:
logger.warning("No documents to process")
return []
processed_chunks = []
for doc in documents:
splitter = self.technical_splitter if doc.metadata['type'] == 'technical' else self.qa_splitter
chunks = splitter.split_documents([doc])
processed_chunks.extend(chunks)
logger.info(f"Documents processed into {len(processed_chunks)} chunks")
return processed_chunks
class RAGSystem:
"""Main RAG system class."""
def __init__(self, model_name: str = MODEL_NAME):
self.model_name = model_name
self.embeddings = None
self.vector_store = None
self.qa_chain = None
self.tokenizer = None
self.model = None
def initialize_system(self):
"""Initialize complete RAG system."""
try:
logger.info("Starting RAG system initialization...")
# Load and process documents
loader = DocumentLoader()
documents = loader.load_pdfs(KNOWLEDGE_BASE_DIR)
if not documents:
raise ValueError("No documents were loaded. Please check the PDF files in the root directory.")
processor = TextProcessor()
processed_chunks = processor.process_documents(documents)
if not processed_chunks:
raise ValueError("No chunks were created from the documents.")
# Initialize embeddings
logger.info("Initializing embeddings...")
self.embeddings = HuggingFaceEmbeddings(
model_name="intfloat/multilingual-e5-large",
model_kwargs={'device': 'cuda' if torch.cuda.is_available() else 'cpu'},
encode_kwargs={'normalize_embeddings': True}
)
# Create vector store
logger.info("Creating vector store...")
self.vector_store = FAISS.from_documents(
processed_chunks,
self.embeddings
)
# Initialize LLM
logger.info("Initializing language model...")
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
token=hf_token,
trust_remote_code=True
)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
token=hf_token,
torch_dtype=torch.float16,
trust_remote_code=True,
device_map="auto"
)
# Create generation pipeline
logger.info("Creating generation pipeline...")
pipe = pipeline(
"text-generation",
model=self.model,
tokenizer=self.tokenizer,
max_new_tokens=512,
temperature=0.1,
top_p=0.95,
repetition_penalty=1.15,
device_map="auto"
)
llm = HuggingFacePipeline(pipeline=pipe)
# Create prompt template
prompt_template = """
Context: {context}
Based on the context above, please provide a clear and concise answer to the following question.
If the information is not in the context, explicitly state so.
Question: {question}
"""
PROMPT = PromptTemplate(
template=prompt_template,
input_variables=["context", "question"]
)
# Set up QA chain
logger.info("Setting up QA chain...")
self.qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=self.vector_store.as_retriever(
search_kwargs={"k": 6}
),
return_source_documents=True,
chain_type_kwargs={"prompt": PROMPT}
)
logger.info("RAG system initialized successfully")
except Exception as e:
logger.error(f"Error during RAG system initialization: {str(e)}")
raise
def generate_response(self, question: str) -> Dict:
"""Generate response for a given question."""
try:
result = self.qa_chain({"query": question})
response = {
'answer': result['result'],
'sources': []
}
for doc in result['source_documents']:
source = {
'title': doc.metadata.get('title', 'Unknown'),
'content': doc.page_content[:200] + "..." if len(doc.page_content) > 200 else doc.page_content,
'metadata': doc.metadata
}
response['sources'].append(source)
return response
except Exception as e:
logger.error(f"Error generating response: {str(e)}")
raise
@spaces.GPU(duration=60)
def process_response(user_input: str, chat_history: List) -> tuple:
"""Process user input and generate response."""
try:
response = rag_system.generate_response(user_input)
# Clean and format response
answer = response['answer']
if "Answer:" in answer:
answer = answer.split("Answer:")[-1].strip()
# Format sources
sources = set([source['title'] for source in response['sources'][:3]])
if sources:
answer += "\n\nπ Sources consulted:\n" + "\n".join([f"β’ {source}" for source in sources])
chat_history.append((user_input, answer))
return chat_history
except Exception as e:
logger.error(f"Error in process_response: {str(e)}")
error_message = f"Sorry, an error occurred: {str(e)}"
chat_history.append((user_input, error_message))
return chat_history
# Initialize RAG system
logger.info("Initializing RAG system...")
try:
rag_system = RAGSystem()
rag_system.initialize_system()
logger.info("RAG system initialization completed")
except Exception as e:
logger.error(f"Failed to initialize RAG system: {str(e)}")
raise
# Create Gradio interface
try:
logger.info("Creating Gradio interface...")
with gr.Blocks(css="div.gradio-container {background-color: #f0f2f6}") as demo:
gr.HTML("""
<div style="text-align: center; max-width: 800px; margin: 0 auto; padding: 20px;">
<h1 style="color: #2d333a;">π FislacBot</h1>
<p style="color: #4a5568;">
AI Assistant specialized in fiscal analysis and FISLAC documentation
</p>
</div>
""")
chatbot = gr.Chatbot(
show_label=False,
container=True,
height=500,
bubble_full_width=True,
show_copy_button=True,
scale=2
)
with gr.Row():
message = gr.Textbox(
placeholder="π Type your question here...",
show_label=False,
container=False,
scale=8,
autofocus=True
)
clear = gr.Button("ποΈ Clear", size="sm", scale=1)
# Suggested questions
gr.HTML('<p style="color: #2d333a; font-weight: bold; margin: 20px 0 10px 0;">π‘ Suggested questions:</p>')
with gr.Row():
suggestion1 = gr.Button("What is FISLAC?", scale=1)
suggestion2 = gr.Button("What are the main modules of FISLAC?", scale=1)
with gr.Row():
suggestion3 = gr.Button("What macroeconomic variables are relevant for advanced economies?", scale=1)
suggestion4 = gr.Button("How does fiscal risk compare between emerging and advanced countries?", scale=1)
# Footer
gr.HTML("""
<div style="text-align: center; max-width: 800px; margin: 20px auto; padding: 20px;
background-color: #f8f9fa; border-radius: 10px;">
<div style="margin-bottom: 15px;">
<h3 style="color: #2d333a;">π About this assistant</h3>
<p style="color: #666; font-size: 14px;">
This bot uses RAG (Retrieval Augmented Generation) technology combining:
</p>
<ul style="list-style: none; color: #666; font-size: 14px;">
<li>πΉ LLM Engine: Llama-2-7b-chat-hf</li>
<li>πΉ Embeddings: multilingual-e5-large</li>
<li>πΉ Vector Store: FAISS</li>
</ul>
</div>
<div style="border-top: 1px solid #ddd; padding-top: 15px;">
<p style="color: #666; font-size: 14px;">
<strong>Current Knowledge Base:</strong><br>
β’ Valencia et al. (2022) - "Assessing macro-fiscal risk for Latin American and Caribbean countries"<br>
β’ FISLAC Technical Documentation
</p>
</div>
<div style="border-top: 1px solid #ddd; margin-top: 15px; padding-top: 15px;">
<p style="color: #666; font-size: 14px;">
Created by <a href="https://www.linkedin.com/in/camilo-vega-169084b1/"
target="_blank" style="color: #2196F3; text-decoration: none;">Camilo Vega</a>,
AI Consultant π€
</p>
</div>
</div>
""")
# Configure event handlers
def submit(user_input, chat_history):
return process_response(user_input, chat_history)
message.submit(submit, [message, chatbot], [chatbot])
clear.click(lambda: None, None, chatbot)
# Handle suggested questions
for btn in [suggestion1, suggestion2, suggestion3, suggestion4]:
btn.click(submit, [btn, chatbot], [chatbot])
logger.info("Gradio interface created successfully")
demo.launch()
except Exception as e:
logger.error(f"Error in Gradio interface creation: {str(e)}")
raise |