Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app-file.py +337 -0
- readme-file.md +64 -0
- requirements-file.txt +13 -0
app-file.py
ADDED
@@ -0,0 +1,337 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
import logging
|
6 |
+
import sys
|
7 |
+
import os
|
8 |
+
from accelerate import init_empty_weights
|
9 |
+
from typing import List, Dict
|
10 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
12 |
+
from langchain.vectorstores import FAISS
|
13 |
+
from langchain.chains import RetrievalQA
|
14 |
+
from langchain.prompts import PromptTemplate
|
15 |
+
from langchain_community.document_loaders import PyPDFLoader
|
16 |
+
|
17 |
+
# Configure logging
|
18 |
+
logging.basicConfig(
|
19 |
+
level=logging.INFO,
|
20 |
+
format='%(asctime)s - %(levelname)s - %(message)s'
|
21 |
+
)
|
22 |
+
logger = logging.getLogger(__name__)
|
23 |
+
|
24 |
+
# Get HuggingFace token from environment variable
|
25 |
+
hf_token = os.environ.get('HUGGINGFACE_TOKEN')
|
26 |
+
if not hf_token:
|
27 |
+
logger.error("HUGGINGFACE_TOKEN environment variable not set")
|
28 |
+
raise ValueError("Please set the HUGGINGFACE_TOKEN environment variable")
|
29 |
+
|
30 |
+
# Constants
|
31 |
+
MODEL_NAME = "meta-llama/Llama-2-7b-chat-hf"
|
32 |
+
KNOWLEDGE_BASE_DIR = "knowledge_base"
|
33 |
+
|
34 |
+
class DocumentLoader:
|
35 |
+
"""Class to manage PDF document loading."""
|
36 |
+
|
37 |
+
@staticmethod
|
38 |
+
def load_pdfs(directory_path: str) -> List:
|
39 |
+
documents = []
|
40 |
+
pdf_files = [f for f in os.listdir(directory_path) if f.endswith('.pdf')]
|
41 |
+
|
42 |
+
for pdf_file in pdf_files:
|
43 |
+
pdf_path = os.path.join(directory_path, pdf_file)
|
44 |
+
try:
|
45 |
+
loader = PyPDFLoader(pdf_path)
|
46 |
+
pdf_documents = loader.load()
|
47 |
+
|
48 |
+
for doc in pdf_documents:
|
49 |
+
doc.metadata.update({
|
50 |
+
'title': pdf_file,
|
51 |
+
'type': 'technical' if 'Valencia' in pdf_file else 'qa',
|
52 |
+
'language': 'en',
|
53 |
+
'page': doc.metadata.get('page', 0)
|
54 |
+
})
|
55 |
+
documents.append(doc)
|
56 |
+
|
57 |
+
logger.info(f"Document {pdf_file} loaded successfully")
|
58 |
+
except Exception as e:
|
59 |
+
logger.error(f"Error loading {pdf_file}: {str(e)}")
|
60 |
+
|
61 |
+
return documents
|
62 |
+
|
63 |
+
class TextProcessor:
|
64 |
+
"""Class to process and split text into chunks."""
|
65 |
+
|
66 |
+
def __init__(self):
|
67 |
+
self.technical_splitter = RecursiveCharacterTextSplitter(
|
68 |
+
chunk_size=800,
|
69 |
+
chunk_overlap=200,
|
70 |
+
separators=["\n\n", "\n", ". ", " ", ""],
|
71 |
+
length_function=len
|
72 |
+
)
|
73 |
+
|
74 |
+
self.qa_splitter = RecursiveCharacterTextSplitter(
|
75 |
+
chunk_size=500,
|
76 |
+
chunk_overlap=100,
|
77 |
+
separators=["\n\n", "\n", ". ", " ", ""],
|
78 |
+
length_function=len
|
79 |
+
)
|
80 |
+
|
81 |
+
def process_documents(self, documents: List) -> List:
|
82 |
+
if not documents:
|
83 |
+
logger.warning("No documents to process")
|
84 |
+
return []
|
85 |
+
|
86 |
+
processed_chunks = []
|
87 |
+
for doc in documents:
|
88 |
+
splitter = self.technical_splitter if doc.metadata['type'] == 'technical' else self.qa_splitter
|
89 |
+
chunks = splitter.split_documents([doc])
|
90 |
+
processed_chunks.extend(chunks)
|
91 |
+
|
92 |
+
logger.info(f"Documents processed into {len(processed_chunks)} chunks")
|
93 |
+
return processed_chunks
|
94 |
+
|
95 |
+
class RAGSystem:
|
96 |
+
"""Main RAG system class."""
|
97 |
+
|
98 |
+
def __init__(self, model_name: str = MODEL_NAME):
|
99 |
+
self.model_name = model_name
|
100 |
+
self.embeddings = None
|
101 |
+
self.vector_store = None
|
102 |
+
self.qa_chain = None
|
103 |
+
self.tokenizer = None
|
104 |
+
self.model = None
|
105 |
+
|
106 |
+
def initialize_system(self):
|
107 |
+
"""Initialize complete RAG system."""
|
108 |
+
try:
|
109 |
+
logger.info("Starting RAG system initialization...")
|
110 |
+
|
111 |
+
# Load and process documents
|
112 |
+
loader = DocumentLoader()
|
113 |
+
documents = loader.load_pdfs(KNOWLEDGE_BASE_DIR)
|
114 |
+
|
115 |
+
processor = TextProcessor()
|
116 |
+
processed_chunks = processor.process_documents(documents)
|
117 |
+
|
118 |
+
# Initialize embeddings
|
119 |
+
self.embeddings = HuggingFaceEmbeddings(
|
120 |
+
model_name="intfloat/multilingual-e5-large",
|
121 |
+
model_kwargs={'device': 'cuda'},
|
122 |
+
encode_kwargs={'normalize_embeddings': True}
|
123 |
+
)
|
124 |
+
|
125 |
+
# Create vector store
|
126 |
+
self.vector_store = FAISS.from_documents(
|
127 |
+
processed_chunks,
|
128 |
+
self.embeddings
|
129 |
+
)
|
130 |
+
|
131 |
+
# Initialize LLM
|
132 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
133 |
+
self.model_name,
|
134 |
+
trust_remote_code=True,
|
135 |
+
token=hf_token
|
136 |
+
)
|
137 |
+
|
138 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
139 |
+
self.model_name,
|
140 |
+
torch_dtype=torch.float16,
|
141 |
+
trust_remote_code=True,
|
142 |
+
token=hf_token,
|
143 |
+
device_map="auto"
|
144 |
+
)
|
145 |
+
|
146 |
+
# Create generation pipeline
|
147 |
+
pipe = pipeline(
|
148 |
+
"text-generation",
|
149 |
+
model=self.model,
|
150 |
+
tokenizer=self.tokenizer,
|
151 |
+
max_new_tokens=512,
|
152 |
+
temperature=0.1,
|
153 |
+
top_p=0.95,
|
154 |
+
repetition_penalty=1.15,
|
155 |
+
device_map="auto"
|
156 |
+
)
|
157 |
+
|
158 |
+
llm = HuggingFacePipeline(pipeline=pipe)
|
159 |
+
|
160 |
+
# Create prompt template
|
161 |
+
prompt_template = """
|
162 |
+
Context: {context}
|
163 |
+
|
164 |
+
Based on the context above, please provide a clear and concise answer to the following question.
|
165 |
+
If the information is not in the context, explicitly state so.
|
166 |
+
|
167 |
+
Question: {question}
|
168 |
+
"""
|
169 |
+
|
170 |
+
PROMPT = PromptTemplate(
|
171 |
+
template=prompt_template,
|
172 |
+
input_variables=["context", "question"]
|
173 |
+
)
|
174 |
+
|
175 |
+
# Set up QA chain
|
176 |
+
self.qa_chain = RetrievalQA.from_chain_type(
|
177 |
+
llm=llm,
|
178 |
+
chain_type="stuff",
|
179 |
+
retriever=self.vector_store.as_retriever(
|
180 |
+
search_kwargs={"k": 6}
|
181 |
+
),
|
182 |
+
return_source_documents=True,
|
183 |
+
chain_type_kwargs={"prompt": PROMPT}
|
184 |
+
)
|
185 |
+
|
186 |
+
logger.info("RAG system initialized successfully")
|
187 |
+
|
188 |
+
except Exception as e:
|
189 |
+
logger.error(f"Error during RAG system initialization: {str(e)}")
|
190 |
+
raise
|
191 |
+
|
192 |
+
def generate_response(self, question: str) -> Dict:
|
193 |
+
"""Generate response for a given question."""
|
194 |
+
try:
|
195 |
+
result = self.qa_chain({"query": question})
|
196 |
+
|
197 |
+
response = {
|
198 |
+
'answer': result['result'],
|
199 |
+
'sources': []
|
200 |
+
}
|
201 |
+
|
202 |
+
for doc in result['source_documents']:
|
203 |
+
source = {
|
204 |
+
'title': doc.metadata.get('title', 'Unknown'),
|
205 |
+
'content': doc.page_content[:200] + "..." if len(doc.page_content) > 200 else doc.page_content,
|
206 |
+
'metadata': doc.metadata
|
207 |
+
}
|
208 |
+
response['sources'].append(source)
|
209 |
+
|
210 |
+
return response
|
211 |
+
|
212 |
+
except Exception as e:
|
213 |
+
logger.error(f"Error generating response: {str(e)}")
|
214 |
+
raise
|
215 |
+
|
216 |
+
@spaces.GPU(duration=60)
|
217 |
+
def process_response(user_input: str, chat_history: List) -> tuple:
|
218 |
+
"""Process user input and generate response."""
|
219 |
+
try:
|
220 |
+
response = rag_system.generate_response(user_input)
|
221 |
+
|
222 |
+
# Clean and format response
|
223 |
+
answer = response['answer']
|
224 |
+
if "Answer:" in answer:
|
225 |
+
answer = answer.split("Answer:")[-1].strip()
|
226 |
+
|
227 |
+
# Format sources
|
228 |
+
sources = set([source['title'] for source in response['sources'][:3]])
|
229 |
+
if sources:
|
230 |
+
answer += "\n\n📚 Sources consulted:\n" + "\n".join([f"• {source}" for source in sources])
|
231 |
+
|
232 |
+
chat_history.append((user_input, answer))
|
233 |
+
return chat_history
|
234 |
+
|
235 |
+
except Exception as e:
|
236 |
+
logger.error(f"Error in process_response: {str(e)}")
|
237 |
+
error_message = f"Sorry, an error occurred: {str(e)}"
|
238 |
+
chat_history.append((user_input, error_message))
|
239 |
+
return chat_history
|
240 |
+
|
241 |
+
# Initialize RAG system
|
242 |
+
logger.info("Initializing RAG system...")
|
243 |
+
rag_system = RAGSystem()
|
244 |
+
rag_system.initialize_system()
|
245 |
+
logger.info("RAG system initialization completed")
|
246 |
+
|
247 |
+
# Create Gradio interface
|
248 |
+
try:
|
249 |
+
logger.info("Creating Gradio interface...")
|
250 |
+
with gr.Blocks(css="div.gradio-container {background-color: #f0f2f6}") as demo:
|
251 |
+
gr.HTML("""
|
252 |
+
<div style="text-align: center; max-width: 800px; margin: 0 auto; padding: 20px;">
|
253 |
+
<h1 style="color: #2d333a;">📊 FislacBot</h1>
|
254 |
+
<p style="color: #4a5568;">
|
255 |
+
AI Assistant specialized in fiscal analysis and FISLAC documentation
|
256 |
+
</p>
|
257 |
+
</div>
|
258 |
+
""")
|
259 |
+
|
260 |
+
chatbot = gr.Chatbot(
|
261 |
+
show_label=False,
|
262 |
+
container=True,
|
263 |
+
height=500,
|
264 |
+
bubble_full_width=True,
|
265 |
+
show_copy_button=True,
|
266 |
+
scale=2
|
267 |
+
)
|
268 |
+
|
269 |
+
with gr.Row():
|
270 |
+
message = gr.Textbox(
|
271 |
+
placeholder="💭 Type your question here...",
|
272 |
+
show_label=False,
|
273 |
+
container=False,
|
274 |
+
scale=8,
|
275 |
+
autofocus=True
|
276 |
+
)
|
277 |
+
clear = gr.Button("🗑️ Clear", size="sm", scale=1)
|
278 |
+
|
279 |
+
# Suggested questions
|
280 |
+
gr.HTML('<p style="color: #2d333a; font-weight: bold; margin: 20px 0 10px 0;">💡 Suggested questions:</p>')
|
281 |
+
with gr.Row():
|
282 |
+
suggestion1 = gr.Button("What is FISLAC?", scale=1)
|
283 |
+
suggestion2 = gr.Button("What are the main modules of FISLAC?", scale=1)
|
284 |
+
|
285 |
+
with gr.Row():
|
286 |
+
suggestion3 = gr.Button("What macroeconomic variables are relevant for advanced economies?", scale=1)
|
287 |
+
suggestion4 = gr.Button("How does fiscal risk compare between emerging and advanced countries?", scale=1)
|
288 |
+
|
289 |
+
# Footer
|
290 |
+
gr.HTML("""
|
291 |
+
<div style="text-align: center; max-width: 800px; margin: 20px auto; padding: 20px;
|
292 |
+
background-color: #f8f9fa; border-radius: 10px;">
|
293 |
+
<div style="margin-bottom: 15px;">
|
294 |
+
<h3 style="color: #2d333a;">🔍 About this assistant</h3>
|
295 |
+
<p style="color: #666; font-size: 14px;">
|
296 |
+
This bot uses RAG (Retrieval Augmented Generation) technology combining:
|
297 |
+
</p>
|
298 |
+
<ul style="list-style: none; color: #666; font-size: 14px;">
|
299 |
+
<li>🔹 LLM Engine: Llama-2-7b-chat-hf</li>
|
300 |
+
<li>🔹 Embeddings: multilingual-e5-large</li>
|
301 |
+
<li>🔹 Vector Store: FAISS</li>
|
302 |
+
</ul>
|
303 |
+
</div>
|
304 |
+
<div style="border-top: 1px solid #ddd; padding-top: 15px;">
|
305 |
+
<p style="color: #666; font-size: 14px;">
|
306 |
+
<strong>Current Knowledge Base:</strong><br>
|
307 |
+
• Valencia et al. (2022) - "Assessing macro-fiscal risk for Latin American and Caribbean countries"<br>
|
308 |
+
• FISLAC Technical Documentation
|
309 |
+
</p>
|
310 |
+
</div>
|
311 |
+
<div style="border-top: 1px solid #ddd; margin-top: 15px; padding-top: 15px;">
|
312 |
+
<p style="color: #666; font-size: 14px;">
|
313 |
+
Created by <a href="https://www.linkedin.com/in/camilo-vega-169084b1/"
|
314 |
+
target="_blank" style="color: #2196F3; text-decoration: none;">Camilo Vega</a>,
|
315 |
+
AI Consultant 🤖
|
316 |
+
</p>
|
317 |
+
</div>
|
318 |
+
</div>
|
319 |
+
""")
|
320 |
+
|
321 |
+
# Configure event handlers
|
322 |
+
def submit(user_input, chat_history):
|
323 |
+
return process_response(user_input, chat_history)
|
324 |
+
|
325 |
+
message.submit(submit, [message, chatbot], [chatbot])
|
326 |
+
clear.click(lambda: None, None, chatbot)
|
327 |
+
|
328 |
+
# Handle suggested questions
|
329 |
+
for btn in [suggestion1, suggestion2, suggestion3, suggestion4]:
|
330 |
+
btn.click(submit, [btn, chatbot], [chatbot])
|
331 |
+
|
332 |
+
logger.info("Gradio interface created successfully")
|
333 |
+
demo.launch()
|
334 |
+
|
335 |
+
except Exception as e:
|
336 |
+
logger.error(f"Error in Gradio interface creation: {str(e)}")
|
337 |
+
raise
|
readme-file.md
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: FislacBot
|
3 |
+
emoji: 📊
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: green
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 5.4.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
accelerator: gpu
|
11 |
+
---
|
12 |
+
|
13 |
+
# FislacBot - AI Assistant for FISLAC Documentation
|
14 |
+
|
15 |
+
FislacBot is an artificial intelligence assistant specialized in FISLAC (Fiscal Latin America and Caribbean) documentation and fiscal analysis. It uses the Llama-2-7b model with RAG (Retrieval Augmented Generation) to provide accurate responses based on official documentation.
|
16 |
+
|
17 |
+
## Author
|
18 |
+
**Camilo Vega Barbosa**
|
19 |
+
- AI Professor and Artificial Intelligence Solutions Consultant
|
20 |
+
- Connect with me:
|
21 |
+
- [LinkedIn](https://www.linkedin.com/in/camilo-vega-169084b1/)
|
22 |
+
- [GitHub](https://github.com/CamiloVga)
|
23 |
+
|
24 |
+
## Features
|
25 |
+
- RAG-powered responses using official FISLAC documentation
|
26 |
+
- Interactive chat interface using Gradio
|
27 |
+
- GPU-accelerated inference
|
28 |
+
- Context-aware responses with source tracking
|
29 |
+
|
30 |
+
## How It Works
|
31 |
+
The application uses a sophisticated RAG system that:
|
32 |
+
1. Processes and indexes FISLAC documentation
|
33 |
+
2. Generates embeddings using multilingual-e5-large
|
34 |
+
3. Uses FAISS for efficient vector storage and retrieval
|
35 |
+
4. Combines retrieved context with Llama-2 for accurate responses
|
36 |
+
|
37 |
+
## Technical Details
|
38 |
+
- **Model**: Meta-llama/Llama-2-7b-chat-hf
|
39 |
+
- **Embeddings**: intfloat/multilingual-e5-large
|
40 |
+
- **Vector Store**: FAISS
|
41 |
+
- **Framework**: Gradio
|
42 |
+
- **Dependencies**: Managed through `requirements.txt`
|
43 |
+
- **Device Configuration**: GPU-optimized using Accelerate
|
44 |
+
|
45 |
+
## Installation
|
46 |
+
To run this application locally:
|
47 |
+
1. Clone the repository
|
48 |
+
2. Install dependencies:
|
49 |
+
```bash
|
50 |
+
pip install -r requirements.txt
|
51 |
+
```
|
52 |
+
3. Run the application:
|
53 |
+
```bash
|
54 |
+
python app.py
|
55 |
+
```
|
56 |
+
|
57 |
+
## Knowledge Base
|
58 |
+
The system is trained on:
|
59 |
+
- Official FISLAC documentation
|
60 |
+
- Valencia et al. (2022) - "Assessing macro-fiscal risk for Latin American and Caribbean countries"
|
61 |
+
- Additional BID fiscal documentation
|
62 |
+
|
63 |
+
---
|
64 |
+
Created by Camilo Vega Barbosa, AI Professor and Solutions Consultant. For more AI projects and collaborations, feel free to connect on [LinkedIn](https://www.linkedin.com/in/camilo-vega-169084b1/) or visit my [GitHub](https://github.com/CamiloVga).
|
requirements-file.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers==4.36.2
|
2 |
+
torch==2.4.0
|
3 |
+
accelerate==0.27.2
|
4 |
+
gradio==4.19.2
|
5 |
+
huggingface-hub==0.20.3
|
6 |
+
numpy==1.24.3
|
7 |
+
scipy==1.11.4
|
8 |
+
faiss-cpu==1.7.4
|
9 |
+
pypdf==3.17.1
|
10 |
+
langchain==0.1.0
|
11 |
+
langchain-community==0.0.13
|
12 |
+
sentence-transformers==2.2.2
|
13 |
+
pdfplumber==0.10.3
|