Spaces:
Runtime error
Runtime error
File size: 9,890 Bytes
0ac9264 768bcdc bb50616 0ac9264 bb50616 b968a85 bb50616 a8cc4f6 e94c73c 0ac9264 e94c73c 0ac9264 e94c73c 0ac9264 768bcdc b968a85 0ac9264 bb50616 b968a85 768bcdc b968a85 768bcdc 0ac9264 4349862 0ac9264 e94c73c 0ac9264 a8cc4f6 4349862 0ac9264 b968a85 e94c73c 0ac9264 a8cc4f6 e94c73c 768bcdc 0ac9264 b968a85 768bcdc e94c73c 0ac9264 e94c73c a8cc4f6 0ac9264 b968a85 bb50616 b968a85 0ac9264 768bcdc b968a85 768bcdc b968a85 bb50616 0ac9264 768bcdc 0ac9264 2fd93e8 0ac9264 2fd93e8 0ac9264 b968a85 a8cc4f6 0ac9264 bb50616 e94c73c 0ac9264 a8cc4f6 0ac9264 a8cc4f6 0ac9264 bb50616 e94c73c bb50616 0ac9264 bb50616 e94c73c bb50616 e94c73c a8cc4f6 0ac9264 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import streamlit as st
import pandas as pd
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import pipeline
from fuzzywuzzy import fuzz
from sklearn.feature_extraction.text import TfidfVectorizer
import torch.nn.functional as F
import torch
import io
import base64
from stqdm import stqdm
import nltk
from nltk.corpus import stopwords
nltk.download('stopwords')
import matplotlib.pyplot as plt
import numpy as np
from lime.lime_text import LimeTextExplainer
from lime import lime_text
stopwords_list = stopwords.words('english') + ['your_additional_stopwords_here']
st.set_page_config(layout="wide")
@st.cache_resource
def load_model_and_tokenizer(model_name):
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
return model, tokenizer
model, tokenizer = load_model_and_tokenizer('nlptown/bert-base-multilingual-uncased-sentiment')
@st.cache_resource
def load_pipeline():
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
return classifier
classifier = load_pipeline()
#defs
def classify_reviews(reviews):
inputs = tokenizer(reviews, return_tensors='pt', truncation=True, padding=True, max_length=512)
outputs = model(**inputs)
probabilities = F.softmax(outputs.logits, dim=1).tolist()
return probabilities
def top_rating(scores):
return scores.index(max(scores)) + 1
def top_prob(scores):
return max(scores)
def get_table_download_link(df):
csv = df.to_csv(index=False)
b64 = base64.b64encode(csv.encode()).decode()
return f'<a href="data:file/csv;base64,{b64}" download="data.csv">Download csv file</a>'
def filter_dataframe(df, review_column, filter_words):
# Return full DataFrame if filter_words is empty or contains only spaces
if not filter_words or all(word.isspace() for word in filter_words):
return df
filter_scores = df[review_column].apply(lambda x: max([fuzz.token_set_ratio(x, word) for word in filter_words]))
return df[filter_scores > 70] # Adjust this threshold as necessary
def process_filter_words(filter_words_input):
filter_words = [word.strip() for word in filter_words_input.split(',')]
return filter_words
# Function for classifying with the new model
def classify_with_new_classes(reviews, class_names):
class_scores = []
for review in reviews:
result = classifier(review, class_names)
scores_dict = dict(zip(result['labels'], result['scores']))
# Reorder scores to match the original class_names order
scores = [scores_dict[name] for name in class_names]
class_scores.append(scores)
return class_scores
def main():
st.title('Sentiment Analysis')
st.markdown('Upload an Excel file to get sentiment analytics')
file = st.file_uploader("Upload an excel file", type=['xlsx'])
review_column = None
df = None
class_names = None
if file is not None:
try:
df = pd.read_excel(file)
df = df.dropna(how='all')
df = df.replace(r'^\s*$', np.nan, regex=True)
df = df.dropna(how='all')
review_column = st.selectbox('Select the column from your excel file containing text', df.columns)
df[review_column] = df[review_column].astype(str)
filter_words_input = st.text_input('Enter words to filter the data by, separated by comma (or leave empty)')
filter_words = [] if filter_words_input.strip() == "" else process_filter_words(filter_words_input)
class_names = st.text_input('Enter the possible class names separated by comma')
df = filter_dataframe(df, review_column, filter_words)
except Exception as e:
st.write("An error occurred while reading the uploaded file. Please make sure it's a valid Excel file.")
return
start_button = st.button('Start Analysis')
if start_button and df is not None:
df = df[df[review_column].notna()]
df = df[df[review_column].str.strip() != '']
class_names = [name.strip() for name in class_names.split(',')]
for name in class_names:
if name not in df.columns:
df[name] = 0.0
if review_column in df.columns:
with st.spinner('Performing sentiment analysis...'):
df, df_display = process_reviews(df, review_column, class_names)
display_ratings(df, review_column)
display_dataframe(df, df_display)
else:
st.write("The selected review column doesn't exist in the dataframe")
def process_reviews(df, review_column, class_names):
with st.spinner('Classifying reviews...'):
progress_bar = st.progress(0)
total_reviews = len(df[review_column].tolist())
review_counter = 0
batch_size = 50
raw_scores = []
reviews = df[review_column].tolist()
for i in range(0, len(reviews), batch_size):
batch_reviews = reviews[i:i+batch_size]
batch_scores = classify_reviews(batch_reviews)
raw_scores.extend(batch_scores)
review_counter += len(batch_reviews)
progress_bar.progress(review_counter / total_reviews)
with st.spinner('Generating classes...'):
class_scores = classify_with_new_classes(df[review_column].tolist(), class_names)
class_scores_dict = {} # New dictionary to store class scores
for i, name in enumerate(class_names):
df[name] = [score[i] for score in class_scores]
class_scores_dict[name] = [score[i] for score in class_scores]
# Add a new column with the class that has the highest score
if class_names and not all(name.isspace() for name in class_names):
df['Highest Class'] = df[class_names].idxmax(axis=1)
df_new = df.copy()
df_new['raw_scores'] = raw_scores
scores_to_df(df_new)
df_display = scores_to_percent(df_new.copy())
# Get all columns excluding the created ones and the review_column
remaining_columns = [col for col in df.columns if col not in [review_column, 'raw_scores', 'Weighted Rating', 'Rating', 'Probability', '1 Star', '2 Star', '3 Star', '4 Star', '5 Star', 'Highest Class'] + class_names]
# Reorder the dataframe with selected columns first, created columns next, then the remaining columns
df_new = df_new[[review_column, 'Weighted Rating', 'Rating', 'Probability', '1 Star', '2 Star', '3 Star', '4 Star', '5 Star'] + class_names + ['Highest Class'] + remaining_columns]
# Reorder df_display as well
df_display = df_display[[review_column, 'Weighted Rating', 'Rating', 'Probability', '1 Star', '2 Star', '3 Star', '4 Star', '5 Star'] + class_names + ['Highest Class'] + remaining_columns]
return df_new, df_display
def scores_to_df(df):
for i in range(1, 6):
df[f'{i} Star'] = df['raw_scores'].apply(lambda scores: scores[i-1]).round(2)
df['Rating'] = df['raw_scores'].apply(top_rating)
df['Probability'] = df['raw_scores'].apply(top_prob).round(2)
# Compute the Weighted Rating
df['Weighted Rating'] = sum(df[f'{i} Star']*i for i in range(1, 6))
df.drop(columns=['raw_scores'], inplace=True)
def scores_to_percent(df):
for i in range(1, 6):
df[f'{i} Star'] = df[f'{i} Star'].apply(lambda x: f'{x*100:.0f}%')
df['Probability'] = df['Probability'].apply(lambda x: f'{x*100:.0f}%')
return df
def convert_df_to_csv(df):
return df.to_csv(index=False).encode('utf-8')
def display_dataframe(df, df_display):
csv = convert_df_to_csv(df)
col1, col2, col3, col4, col5, col6, col7, col8, col9 = st.columns(9)
with col1:
st.download_button(
"Download CSV",
csv,
"data.csv",
"text/csv",
key='download-csv'
)
st.dataframe(df_display)
def important_words(reviews, model, num_words=5):
# Create a LimeTextExplainer
explainer = LimeTextExplainer(class_names=[str(i) for i in range(1, 6)])
# Define a prediction function that takes a list of texts and outputs a prediction matrix
def predict_proba(texts):
inputs = tokenizer(texts, return_tensors='pt', truncation=True, padding=True, max_length=512)
outputs = model(**inputs)
probabilities = F.softmax(outputs.logits, dim=1).detach().numpy()
return probabilities
important_words_per_rating = {}
for rating in range(1, 6):
important_words_per_rating[rating] = []
for review in reviews:
# Get the explanation for the review
explanation = explainer.explain_instance(review, predict_proba, num_features=num_words, labels=[rating - 1])
# Get the list of important words
words = [feature[0] for feature in explanation.as_list(rating - 1)]
important_words_per_rating[rating].extend(words)
# Keep only unique words
important_words_per_rating[rating] = list(set(important_words_per_rating[rating]))
return important_words_per_rating
def display_ratings(df, review_column):
cols = st.columns(5)
for i in range(1, 6):
rating_reviews = df[df['Rating'] == i][review_column]
top_words = important_words(rating_reviews, model)
rating_counts = rating_reviews.shape[0]
cols[i-1].markdown(f"### {rating_counts}")
cols[i-1].markdown(f"{'⭐' * i}")
# Display the most important words for each rating
cols[i-1].markdown(f"#### Most Important Words:")
if top_words:
for word in top_words[i]:
cols[i-1].markdown(f"**{word}**")
else:
cols[i-1].markdown("No important words to display")
if __name__ == "__main__":
main()
|