Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- app.py +60 -33
- requirements.txt +2 -1
app.py
CHANGED
@@ -16,17 +16,29 @@ nltk.download('stopwords')
|
|
16 |
import matplotlib.pyplot as plt
|
17 |
import numpy as np
|
18 |
|
19 |
-
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
model_name = 'nlptown/bert-base-multilingual-uncased-sentiment'
|
23 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
24 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
25 |
st.set_page_config(layout="wide")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
# Import the new model and tokenizer
|
28 |
|
29 |
-
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
30 |
|
31 |
|
32 |
#defs
|
@@ -83,38 +95,32 @@ def main():
|
|
83 |
file = st.file_uploader("Upload an excel file", type=['xlsx'])
|
84 |
review_column = None
|
85 |
df = None
|
86 |
-
class_names = None
|
87 |
|
88 |
if file is not None:
|
89 |
try:
|
90 |
df = pd.read_excel(file)
|
91 |
-
# Drop rows where all columns are NaN
|
92 |
df = df.dropna(how='all')
|
93 |
-
# Replace blank spaces with NaN, then drop rows where all columns are NaN again
|
94 |
df = df.replace(r'^\s*$', np.nan, regex=True)
|
95 |
df = df.dropna(how='all')
|
96 |
review_column = st.selectbox('Select the column from your excel file containing text', df.columns)
|
97 |
df[review_column] = df[review_column].astype(str)
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
df = filter_dataframe(df, review_column, filter_words) # Filter the DataFrame
|
104 |
except Exception as e:
|
105 |
st.write("An error occurred while reading the uploaded file. Please make sure it's a valid Excel file.")
|
106 |
return
|
107 |
|
108 |
start_button = st.button('Start Analysis')
|
109 |
|
110 |
-
|
111 |
if start_button and df is not None:
|
112 |
-
# Drop rows with NaN or blank values in the review_column
|
113 |
df = df[df[review_column].notna()]
|
114 |
df = df[df[review_column].str.strip() != '']
|
115 |
-
|
116 |
-
|
117 |
-
for name in class_names: # Add a new column for each class name
|
118 |
if name not in df.columns:
|
119 |
df[name] = 0.0
|
120 |
|
@@ -122,10 +128,11 @@ def main():
|
|
122 |
with st.spinner('Performing sentiment analysis...'):
|
123 |
df, df_display = process_reviews(df, review_column, class_names)
|
124 |
|
125 |
-
display_ratings(df, review_column)
|
126 |
display_dataframe(df, df_display)
|
127 |
else:
|
128 |
-
st.write(
|
|
|
129 |
|
130 |
|
131 |
|
@@ -219,22 +226,41 @@ def display_dataframe(df, df_display):
|
|
219 |
|
220 |
st.dataframe(df_display)
|
221 |
|
222 |
-
def important_words(reviews, num_words=5):
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
|
232 |
def display_ratings(df, review_column):
|
233 |
cols = st.columns(5)
|
234 |
|
235 |
for i in range(1, 6):
|
236 |
rating_reviews = df[df['Rating'] == i][review_column]
|
237 |
-
top_words = important_words(rating_reviews)
|
238 |
|
239 |
rating_counts = rating_reviews.shape[0]
|
240 |
cols[i-1].markdown(f"### {rating_counts}")
|
@@ -243,12 +269,13 @@ def display_ratings(df, review_column):
|
|
243 |
# Display the most important words for each rating
|
244 |
cols[i-1].markdown(f"#### Most Important Words:")
|
245 |
if top_words:
|
246 |
-
for word in top_words:
|
247 |
cols[i-1].markdown(f"**{word}**")
|
248 |
else:
|
249 |
cols[i-1].markdown("No important words to display")
|
250 |
|
251 |
|
|
|
252 |
|
253 |
|
254 |
|
|
|
16 |
import matplotlib.pyplot as plt
|
17 |
import numpy as np
|
18 |
|
19 |
+
from lime.lime_text import LimeTextExplainer
|
20 |
+
from lime import lime_text
|
21 |
+
|
22 |
|
23 |
+
stopwords_list = stopwords.words('english') + ['your_additional_stopwords_here']
|
|
|
|
|
|
|
24 |
st.set_page_config(layout="wide")
|
25 |
+
@st.cache_resource
|
26 |
+
def load_model_and_tokenizer(model_name):
|
27 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
29 |
+
return model, tokenizer
|
30 |
+
|
31 |
+
model, tokenizer = load_model_and_tokenizer('nlptown/bert-base-multilingual-uncased-sentiment')
|
32 |
+
|
33 |
+
@st.cache_resource
|
34 |
+
def load_pipeline():
|
35 |
+
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
36 |
+
return classifier
|
37 |
+
|
38 |
+
classifier = load_pipeline()
|
39 |
+
|
40 |
|
|
|
41 |
|
|
|
42 |
|
43 |
|
44 |
#defs
|
|
|
95 |
file = st.file_uploader("Upload an excel file", type=['xlsx'])
|
96 |
review_column = None
|
97 |
df = None
|
98 |
+
class_names = None
|
99 |
|
100 |
if file is not None:
|
101 |
try:
|
102 |
df = pd.read_excel(file)
|
|
|
103 |
df = df.dropna(how='all')
|
|
|
104 |
df = df.replace(r'^\s*$', np.nan, regex=True)
|
105 |
df = df.dropna(how='all')
|
106 |
review_column = st.selectbox('Select the column from your excel file containing text', df.columns)
|
107 |
df[review_column] = df[review_column].astype(str)
|
108 |
|
109 |
+
filter_words_input = st.text_input('Enter words to filter the data by, separated by comma (or leave empty)')
|
110 |
+
filter_words = [] if filter_words_input.strip() == "" else process_filter_words(filter_words_input)
|
111 |
+
class_names = st.text_input('Enter the possible class names separated by comma')
|
112 |
+
df = filter_dataframe(df, review_column, filter_words)
|
|
|
113 |
except Exception as e:
|
114 |
st.write("An error occurred while reading the uploaded file. Please make sure it's a valid Excel file.")
|
115 |
return
|
116 |
|
117 |
start_button = st.button('Start Analysis')
|
118 |
|
|
|
119 |
if start_button and df is not None:
|
|
|
120 |
df = df[df[review_column].notna()]
|
121 |
df = df[df[review_column].str.strip() != '']
|
122 |
+
class_names = [name.strip() for name in class_names.split(',')]
|
123 |
+
for name in class_names:
|
|
|
124 |
if name not in df.columns:
|
125 |
df[name] = 0.0
|
126 |
|
|
|
128 |
with st.spinner('Performing sentiment analysis...'):
|
129 |
df, df_display = process_reviews(df, review_column, class_names)
|
130 |
|
131 |
+
display_ratings(df, review_column)
|
132 |
display_dataframe(df, df_display)
|
133 |
else:
|
134 |
+
st.write("The selected review column doesn't exist in the dataframe")
|
135 |
+
|
136 |
|
137 |
|
138 |
|
|
|
226 |
|
227 |
st.dataframe(df_display)
|
228 |
|
229 |
+
def important_words(reviews, model, num_words=5):
|
230 |
+
# Create a LimeTextExplainer
|
231 |
+
explainer = LimeTextExplainer(class_names=[str(i) for i in range(1, 6)])
|
232 |
+
|
233 |
+
# Define a prediction function that takes a list of texts and outputs a prediction matrix
|
234 |
+
def predict_proba(texts):
|
235 |
+
inputs = tokenizer(texts, return_tensors='pt', truncation=True, padding=True, max_length=512)
|
236 |
+
outputs = model(**inputs)
|
237 |
+
probabilities = F.softmax(outputs.logits, dim=1).detach().numpy()
|
238 |
+
return probabilities
|
239 |
+
|
240 |
+
important_words_per_rating = {}
|
241 |
+
|
242 |
+
for rating in range(1, 6):
|
243 |
+
important_words_per_rating[rating] = []
|
244 |
+
for review in reviews:
|
245 |
+
# Get the explanation for the review
|
246 |
+
explanation = explainer.explain_instance(review, predict_proba, num_features=num_words, labels=[rating - 1])
|
247 |
+
|
248 |
+
# Get the list of important words
|
249 |
+
words = [feature[0] for feature in explanation.as_list(rating - 1)]
|
250 |
+
important_words_per_rating[rating].extend(words)
|
251 |
+
|
252 |
+
# Keep only unique words
|
253 |
+
important_words_per_rating[rating] = list(set(important_words_per_rating[rating]))
|
254 |
+
|
255 |
+
return important_words_per_rating
|
256 |
+
|
257 |
|
258 |
def display_ratings(df, review_column):
|
259 |
cols = st.columns(5)
|
260 |
|
261 |
for i in range(1, 6):
|
262 |
rating_reviews = df[df['Rating'] == i][review_column]
|
263 |
+
top_words = important_words(rating_reviews, model)
|
264 |
|
265 |
rating_counts = rating_reviews.shape[0]
|
266 |
cols[i-1].markdown(f"### {rating_counts}")
|
|
|
269 |
# Display the most important words for each rating
|
270 |
cols[i-1].markdown(f"#### Most Important Words:")
|
271 |
if top_words:
|
272 |
+
for word in top_words[i]:
|
273 |
cols[i-1].markdown(f"**{word}**")
|
274 |
else:
|
275 |
cols[i-1].markdown("No important words to display")
|
276 |
|
277 |
|
278 |
+
|
279 |
|
280 |
|
281 |
|
requirements.txt
CHANGED
@@ -9,4 +9,5 @@ matplotlib
|
|
9 |
fuzzywuzzy
|
10 |
scikit-learn
|
11 |
nltk
|
12 |
-
numpy
|
|
|
|
9 |
fuzzywuzzy
|
10 |
scikit-learn
|
11 |
nltk
|
12 |
+
numpy
|
13 |
+
lime
|