Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,928 Bytes
698d4cd 2019ee0 213e5d3 698d4cd 81b2481 213e5d3 18fbeec 213e5d3 698d4cd 213e5d3 18fbeec 24da5c3 18fbeec 9c06b1a 18fbeec 9c06b1a 18fbeec 2f15cbe 18fbeec 81b2481 18fbeec 81b2481 698d4cd 18fbeec 24da5c3 18fbeec 698d4cd 18fbeec 4d9e689 18fbeec 698d4cd 4d9e689 172038e 18fbeec 172038e 698d4cd 18fbeec a4f881b e18ae6e 18fbeec 2f15cbe 18fbeec 698d4cd 18fbeec 698d4cd 8a09658 18fbeec e18ae6e 18fbeec a4f881b 18fbeec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import spaces
import os
import tempfile
import gradio as gr
from dotenv import load_dotenv
import torch
from scipy.io.wavfile import write
from diffusers import DiffusionPipeline
from transformers import pipeline
from pathlib import Path
load_dotenv()
hf_token = os.getenv("HF_TKN")
device_id = 0 if torch.cuda.is_available() else -1
captioning_pipeline = pipeline(
"image-to-text",
model="nlpconnect/vit-gpt2-image-captioning",
device=device_id
)
pipe = DiffusionPipeline.from_pretrained(
"cvssp/audioldm2",
use_auth_token=hf_token
)
@spaces.GPU(duration=120)
def analyze_image_with_free_model(image_file):
try:
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as temp_file:
temp_file.write(image_file)
temp_image_path = temp_file.name
results = captioning_pipeline(temp_image_path)
if not results or not isinstance(results, list):
return "Error: Could not generate caption.", True
caption = results[0].get("generated_text", "").strip()
if not caption:
return "No caption was generated.", True
return caption, False
except Exception as e:
return f"Error analyzing image: {e}", True
@spaces.GPU(duration=120)
def get_audioldm_from_caption(caption):
try:
pipe.to("cuda")
audio_output = pipe(
prompt=caption,
num_inference_steps=50,
guidance_scale=7.5
)
pipe.to("cpu")
audio = audio_output.audios[0]
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_wav:
write(temp_wav.name, 16000, audio)
return temp_wav.name
except Exception as e:
print(f"Error generating audio from caption: {e}")
return None
css = """
#col-container{
margin: 0 auto;
max-width: 800px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML("""
<h1 style="text-align: center;">🎶 Generate Sound Effects from Image</h1>
<p style="text-align: center;">
âš¡ Powered by <a href="https://bilsimaging.com" target="_blank">Bilsimaging</a>
</p>
""")
gr.Markdown("""
Welcome to this unique sound effect generator! This tool allows you to upload an image and generate a
descriptive caption and a corresponding sound effect, all using free, open-source models on Hugging Face.
**💡 How it works:**
1. **Upload an image**: Choose an image that you'd like to analyze.
2. **Generate Description**: Click on 'Generate Description' to get a textual description of your uploaded image.
3. **Generate Sound Effect**: Based on the image description, click on 'Generate Sound Effect' to create a
sound effect that matches the image context.
Enjoy the journey from visual to auditory sensation with just a few clicks!
""")
image_upload = gr.File(label="Upload Image", type="binary")
generate_description_button = gr.Button("Generate Description")
caption_display = gr.Textbox(label="Image Description", interactive=False)
generate_sound_button = gr.Button("Generate Sound Effect")
audio_output = gr.Audio(label="Generated Sound Effect")
gr.Markdown("""
## 👥 How You Can Contribute
We welcome contributions and suggestions for improvements. Your feedback is invaluable
to the continuous enhancement of this application.
For support, questions, or to contribute, please contact us at
[[email protected]](mailto:[email protected]).
Support our work and get involved by donating through
[Ko-fi](https://ko-fi.com/bilsimaging). - Bilel Aroua
""")
gr.Markdown("""
## 📢 Stay Connected
This app is a testament to the creative possibilities that emerge when technology meets art.
Enjoy exploring the auditory landscape of your images!
""")
def update_caption(image_file):
description, _ = analyze_image_with_free_model(image_file)
return description
def generate_sound(description):
if not description or description.startswith("Error"):
return None
audio_path = get_audioldm_from_caption(description)
return audio_path
generate_description_button.click(
fn=update_caption,
inputs=image_upload,
outputs=caption_display
)
generate_sound_button.click(
fn=generate_sound,
inputs=caption_display,
outputs=audio_output
)
gr.HTML('<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2FGenerate-Sound-Effects-from-Image"><img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2FGenerate-Sound-Effects-from-Image&countColor=%23263759" /></a>')
html = gr.HTML()
demo.launch(debug=True, share=True) |