Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,262 +1,145 @@
|
|
1 |
-
import
|
2 |
import os
|
3 |
import tempfile
|
|
|
|
|
4 |
import torch
|
5 |
-
import numpy as np
|
6 |
from scipy.io.wavfile import write
|
7 |
-
from dotenv import load_dotenv
|
8 |
from diffusers import DiffusionPipeline
|
9 |
from transformers import pipeline
|
10 |
-
from
|
11 |
-
import io
|
12 |
-
from pydub import AudioSegment
|
13 |
-
from typing import List
|
14 |
-
from functools import lru_cache
|
15 |
|
16 |
-
# Load environment variables
|
17 |
load_dotenv()
|
18 |
-
|
19 |
-
|
20 |
-
# Device configuration
|
21 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
22 |
|
23 |
-
|
24 |
-
@lru_cache(maxsize=None)
|
25 |
-
def load_caption_model():
|
26 |
-
return pipeline(
|
27 |
-
"image-to-text",
|
28 |
-
model="Salesforce/blip-image-captioning-base",
|
29 |
-
device=device
|
30 |
-
)
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
)
|
38 |
-
return pipe
|
39 |
|
40 |
-
|
41 |
-
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
try:
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
image.verify()
|
50 |
-
image = Image.open(io.BytesIO(image_file))
|
51 |
-
except Exception as e:
|
52 |
-
raise ValueError(f"Invalid image file: {str(e)}")
|
53 |
|
54 |
-
results =
|
55 |
if not results or not isinstance(results, list):
|
56 |
-
|
57 |
|
58 |
caption = results[0].get("generated_text", "").strip()
|
59 |
if not caption:
|
60 |
-
|
61 |
-
|
62 |
-
return caption
|
63 |
|
64 |
except Exception as e:
|
65 |
-
|
66 |
|
67 |
-
|
68 |
-
|
69 |
try:
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
audio_length_in_s=10
|
79 |
-
).audios[0]
|
80 |
-
|
81 |
-
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmpfile:
|
82 |
-
write(tmpfile.name, 16000, audio)
|
83 |
-
return tmpfile.name
|
84 |
-
|
85 |
-
except Exception as e:
|
86 |
-
raise gr.Error(f"Audio generation error: {str(e)}")
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
if not audio_files:
|
92 |
-
raise ValueError("No audio files to blend")
|
93 |
-
|
94 |
-
# Load first audio to get base parameters
|
95 |
-
base_audio = AudioSegment.from_wav(audio_files[0])
|
96 |
-
mixed = base_audio
|
97 |
-
|
98 |
-
# Mix subsequent tracks
|
99 |
-
for file in audio_files[1:]:
|
100 |
-
track = AudioSegment.from_wav(file)
|
101 |
-
if len(track) > len(mixed):
|
102 |
-
mixed = mixed.overlay(track[:len(mixed)])
|
103 |
-
else:
|
104 |
-
mixed = mixed.overlay(track)
|
105 |
-
|
106 |
-
# Export mixed audio
|
107 |
-
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmpfile:
|
108 |
-
mixed.export(tmpfile.name, format="wav")
|
109 |
-
return tmpfile.name
|
110 |
-
|
111 |
-
except Exception as e:
|
112 |
-
raise gr.Error(f"Audio mixing error: {str(e)}")
|
113 |
-
|
114 |
-
def process_inputs(input_choice, image_file, *prompts):
|
115 |
-
"""Handle both image and text input modes"""
|
116 |
-
try:
|
117 |
-
# Filter empty prompts
|
118 |
-
valid_prompts = [p.strip() for p in prompts if p.strip()]
|
119 |
-
|
120 |
-
if input_choice == "Image":
|
121 |
-
if not image_file:
|
122 |
-
raise gr.Error("Please upload an image")
|
123 |
-
main_prompt = analyze_image(image_file)
|
124 |
-
valid_prompts = [main_prompt] + valid_prompts
|
125 |
-
else:
|
126 |
-
if not valid_prompts:
|
127 |
-
raise gr.Error("Please enter at least one text prompt")
|
128 |
-
|
129 |
-
# Generate audio for each prompt
|
130 |
-
audio_files = []
|
131 |
-
for idx, prompt in enumerate(valid_prompts):
|
132 |
-
audio_path = generate_audio(prompt)
|
133 |
-
audio_files.append(audio_path)
|
134 |
-
|
135 |
-
# Blend all audio files
|
136 |
-
final_audio = blend_audios(audio_files)
|
137 |
-
return valid_prompts, final_audio, audio_files
|
138 |
|
139 |
except Exception as e:
|
140 |
-
|
|
|
141 |
|
142 |
-
# Gradio interface
|
143 |
css = """
|
144 |
-
#
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
"""
|
149 |
|
150 |
-
with gr.Blocks(css=css
|
151 |
-
with gr.Column(elem_id="
|
152 |
-
gr.
|
153 |
-
|
154 |
-
|
|
|
|
|
155 |
""")
|
156 |
-
|
157 |
-
# Input Mode Selector
|
158 |
-
input_choice = gr.Radio(
|
159 |
-
choices=["Image", "Text"],
|
160 |
-
value="Image",
|
161 |
-
label="Input Mode",
|
162 |
-
interactive=True
|
163 |
-
)
|
164 |
-
|
165 |
-
# Image Input Section
|
166 |
-
with gr.Row(visible=True) as image_row:
|
167 |
-
image_input = gr.Image(type="filepath", label="Upload Image")
|
168 |
-
|
169 |
-
# Text Input Section
|
170 |
-
with gr.Column(visible=False) as text_inputs_col:
|
171 |
-
prompt_components = [gr.Textbox(label=f"Sound Effect {i+1}", lines=2) for i in range(3)]
|
172 |
-
add_prompt_btn = gr.Button("Add Another Prompt", variant="secondary")
|
173 |
-
|
174 |
-
# Dynamic prompt management
|
175 |
-
current_prompts = gr.State(value=3)
|
176 |
-
|
177 |
-
def add_prompt(current_count):
|
178 |
-
new_count = current_count + 1
|
179 |
-
new_prompt = gr.Textbox(label=f"Sound Effect {new_count}", lines=2, visible=True)
|
180 |
-
return [new_count] + [new_prompt] + [gr.update(visible=True)]*(new_count)
|
181 |
-
|
182 |
-
add_prompt_btn.click(
|
183 |
-
fn=add_prompt,
|
184 |
-
inputs=current_prompts,
|
185 |
-
outputs=[current_prompts] + prompt_components + [text_inputs_col]
|
186 |
-
)
|
187 |
-
|
188 |
-
# Toggle between image/text inputs
|
189 |
-
def toggle_inputs(choice):
|
190 |
-
if choice == "Image":
|
191 |
-
return [gr.update(visible=True), gr.update(visible=False)]
|
192 |
-
return [gr.update(visible=False), gr.update(visible=True)]
|
193 |
-
|
194 |
-
input_choice.change(
|
195 |
-
fn=toggle_inputs,
|
196 |
-
inputs=input_choice,
|
197 |
-
outputs=[image_row, text_inputs_col]
|
198 |
-
)
|
199 |
-
|
200 |
-
# Generation Controls
|
201 |
-
with gr.Accordion("Advanced Settings", open=False):
|
202 |
-
steps_slider = gr.Slider(10, 200, 100, label="Generation Steps")
|
203 |
-
guidance_slider = gr.Slider(1.0, 15.0, 7.5, label="Guidance Scale")
|
204 |
-
|
205 |
-
generate_btn = gr.Button("Generate Mixed Sound", variant="primary")
|
206 |
-
|
207 |
-
# Outputs
|
208 |
-
with gr.Column():
|
209 |
-
gr.Markdown("### Generation Results")
|
210 |
-
prompt_display = gr.JSON(label="Used Prompts")
|
211 |
-
final_audio = gr.Audio(label="Blended Sound Effect", interactive=False)
|
212 |
-
|
213 |
-
with gr.Accordion("Individual Tracks", open=False):
|
214 |
-
track_components = [gr.Audio(visible=False) for _ in range(5)]
|
215 |
-
|
216 |
-
# Examples
|
217 |
-
gr.Examples(
|
218 |
-
examples=[
|
219 |
-
["examples/storm.jpg", "A dramatic thunderstorm", "Heavy rain pouring", "Distant rumble"],
|
220 |
-
[None, "Clock ticking", "Crowd murmuring", "Footsteps on concrete"]
|
221 |
-
],
|
222 |
-
inputs=[image_input] + prompt_components[:2],
|
223 |
-
outputs=[prompt_display, final_audio],
|
224 |
-
fn=lambda *x: process_inputs("Image", *x),
|
225 |
-
cache_examples=True
|
226 |
-
)
|
227 |
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
)
|
257 |
|
258 |
-
|
259 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
|
261 |
-
|
262 |
-
app.launch(debug=True, share=True)
|
|
|
1 |
+
import spaces
|
2 |
import os
|
3 |
import tempfile
|
4 |
+
import gradio as gr
|
5 |
+
from dotenv import load_dotenv
|
6 |
import torch
|
|
|
7 |
from scipy.io.wavfile import write
|
|
|
8 |
from diffusers import DiffusionPipeline
|
9 |
from transformers import pipeline
|
10 |
+
from pathlib import Path
|
|
|
|
|
|
|
|
|
11 |
|
|
|
12 |
load_dotenv()
|
13 |
+
hf_token = os.getenv("HF_TKN")
|
|
|
|
|
|
|
14 |
|
15 |
+
device_id = 0 if torch.cuda.is_available() else -1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
captioning_pipeline = pipeline(
|
18 |
+
"image-to-text",
|
19 |
+
model="nlpconnect/vit-gpt2-image-captioning",
|
20 |
+
device=device_id
|
21 |
+
)
|
|
|
|
|
22 |
|
23 |
+
pipe = DiffusionPipeline.from_pretrained(
|
24 |
+
"cvssp/audioldm2",
|
25 |
+
use_auth_token=hf_token
|
26 |
+
)
|
27 |
|
28 |
+
@spaces.GPU(duration=120)
|
29 |
+
def analyze_image_with_free_model(image_file):
|
30 |
try:
|
31 |
+
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as temp_file:
|
32 |
+
temp_file.write(image_file)
|
33 |
+
temp_image_path = temp_file.name
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
results = captioning_pipeline(temp_image_path)
|
36 |
if not results or not isinstance(results, list):
|
37 |
+
return "Error: Could not generate caption.", True
|
38 |
|
39 |
caption = results[0].get("generated_text", "").strip()
|
40 |
if not caption:
|
41 |
+
return "No caption was generated.", True
|
42 |
+
return caption, False
|
|
|
43 |
|
44 |
except Exception as e:
|
45 |
+
return f"Error analyzing image: {e}", True
|
46 |
|
47 |
+
@spaces.GPU(duration=120)
|
48 |
+
def get_audioldm_from_caption(caption):
|
49 |
try:
|
50 |
+
pipe.to("cuda")
|
51 |
+
audio_output = pipe(
|
52 |
+
prompt=caption,
|
53 |
+
num_inference_steps=50,
|
54 |
+
guidance_scale=7.5
|
55 |
+
)
|
56 |
+
pipe.to("cpu")
|
57 |
+
audio = audio_output.audios[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_wav:
|
60 |
+
write(temp_wav.name, 16000, audio)
|
61 |
+
return temp_wav.name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
except Exception as e:
|
64 |
+
print(f"Error generating audio from caption: {e}")
|
65 |
+
return None
|
66 |
|
|
|
67 |
css = """
|
68 |
+
#col-container{
|
69 |
+
margin: 0 auto;
|
70 |
+
max-width: 800px;
|
71 |
+
}
|
72 |
"""
|
73 |
|
74 |
+
with gr.Blocks(css=css) as demo:
|
75 |
+
with gr.Column(elem_id="col-container"):
|
76 |
+
gr.HTML("""
|
77 |
+
<h1 style="text-align: center;">🎶 Generate Sound Effects from Image</h1>
|
78 |
+
<p style="text-align: center;">
|
79 |
+
⚡ Powered by <a href="https://bilsimaging.com" target="_blank">Bilsimaging</a>
|
80 |
+
</p>
|
81 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
+
gr.Markdown("""
|
84 |
+
Welcome to this unique sound effect generator! This tool allows you to upload an image and generate a
|
85 |
+
descriptive caption and a corresponding sound effect, all using free, open-source models on Hugging Face.
|
86 |
+
|
87 |
+
**💡 How it works:**
|
88 |
+
1. **Upload an image**: Choose an image that you'd like to analyze.
|
89 |
+
2. **Generate Description**: Click on 'Generate Description' to get a textual description of your uploaded image.
|
90 |
+
3. **Generate Sound Effect**: Based on the image description, click on 'Generate Sound Effect' to create a
|
91 |
+
sound effect that matches the image context.
|
92 |
+
|
93 |
+
Enjoy the journey from visual to auditory sensation with just a few clicks!
|
94 |
+
""")
|
95 |
+
|
96 |
+
image_upload = gr.File(label="Upload Image", type="binary")
|
97 |
+
generate_description_button = gr.Button("Generate Description")
|
98 |
+
caption_display = gr.Textbox(label="Image Description", interactive=False)
|
99 |
+
generate_sound_button = gr.Button("Generate Sound Effect")
|
100 |
+
audio_output = gr.Audio(label="Generated Sound Effect")
|
101 |
+
|
102 |
+
gr.Markdown("""
|
103 |
+
## 👥 How You Can Contribute
|
104 |
+
We welcome contributions and suggestions for improvements. Your feedback is invaluable
|
105 |
+
to the continuous enhancement of this application.
|
106 |
+
|
107 |
+
For support, questions, or to contribute, please contact us at
|
108 |
+
[[email protected]](mailto:[email protected]).
|
109 |
+
|
110 |
+
Support our work and get involved by donating through
|
111 |
+
[Ko-fi](https://ko-fi.com/bilsimaging). - Bilel Aroua
|
112 |
+
""")
|
113 |
+
|
114 |
+
gr.Markdown("""
|
115 |
+
## 📢 Stay Connected
|
116 |
+
This app is a testament to the creative possibilities that emerge when technology meets art.
|
117 |
+
Enjoy exploring the auditory landscape of your images!
|
118 |
+
""")
|
119 |
+
|
120 |
+
def update_caption(image_file):
|
121 |
+
description, _ = analyze_image_with_free_model(image_file)
|
122 |
+
return description
|
123 |
+
|
124 |
+
def generate_sound(description):
|
125 |
+
if not description or description.startswith("Error"):
|
126 |
+
return None
|
127 |
+
audio_path = get_audioldm_from_caption(description)
|
128 |
+
return audio_path
|
129 |
+
|
130 |
+
generate_description_button.click(
|
131 |
+
fn=update_caption,
|
132 |
+
inputs=image_upload,
|
133 |
+
outputs=caption_display
|
134 |
)
|
135 |
|
136 |
+
generate_sound_button.click(
|
137 |
+
fn=generate_sound,
|
138 |
+
inputs=caption_display,
|
139 |
+
outputs=audio_output
|
140 |
+
)
|
141 |
+
|
142 |
+
gr.HTML('<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2FGenerate-Sound-Effects-from-Image"><img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2FGenerate-Sound-Effects-from-Image&countColor=%23263759" /></a>')
|
143 |
+
html = gr.HTML()
|
144 |
|
145 |
+
demo.launch(debug=True, share=True)
|
|