Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,7 @@ from transformers import (
|
|
6 |
AutoModelForCausalLM,
|
7 |
pipeline,
|
8 |
AutoProcessor,
|
9 |
-
MusicgenForConditionalGeneration
|
10 |
)
|
11 |
from scipy.io.wavfile import write
|
12 |
import tempfile
|
@@ -17,81 +17,44 @@ import spaces # Assumes Hugging Face Spaces library supports `@spaces.GPU`
|
|
17 |
load_dotenv()
|
18 |
hf_token = os.getenv("HF_TOKEN")
|
19 |
|
20 |
-
# Globals for lazy loading
|
21 |
-
llama_pipeline = None
|
22 |
-
musicgen_model = None
|
23 |
-
musicgen_processor = None
|
24 |
|
25 |
# ---------------------------------------------------------------------
|
26 |
-
# Load Llama 3
|
27 |
# ---------------------------------------------------------------------
|
28 |
@spaces.GPU(duration=300) # Adjust GPU allocation duration
|
29 |
-
def
|
30 |
-
global llama_pipeline
|
31 |
-
if llama_pipeline is None:
|
32 |
-
try:
|
33 |
-
print("Starting model loading...")
|
34 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
|
35 |
-
print("Tokenizer loaded.")
|
36 |
-
model = AutoModelForCausalLM.from_pretrained(
|
37 |
-
model_id,
|
38 |
-
use_auth_token=token,
|
39 |
-
torch_dtype=torch.float16,
|
40 |
-
device_map="auto", # Automatically handles GPU allocation
|
41 |
-
trust_remote_code=True
|
42 |
-
)
|
43 |
-
print("Model loaded. Initializing pipeline...")
|
44 |
-
llama_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
45 |
-
print("Pipeline initialized successfully.")
|
46 |
-
except Exception as e:
|
47 |
-
print(f"Error loading Llama pipeline: {e}")
|
48 |
-
return str(e)
|
49 |
-
return llama_pipeline
|
50 |
-
|
51 |
-
# ---------------------------------------------------------------------
|
52 |
-
# Generate Radio Script
|
53 |
-
# ---------------------------------------------------------------------
|
54 |
-
def generate_script(user_input: str, pipeline_llama):
|
55 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
system_prompt = (
|
57 |
"You are a top-tier radio imaging producer using Llama 3. "
|
58 |
"Take the user's concept and craft a short, creative promo script."
|
59 |
)
|
60 |
-
combined_prompt = f"{system_prompt}\nUser concept: {
|
61 |
-
result =
|
62 |
-
return result[0][
|
63 |
except Exception as e:
|
64 |
return f"Error generating script: {e}"
|
65 |
|
66 |
-
# ---------------------------------------------------------------------
|
67 |
-
# Load MusicGen Model (Lazy Loading)
|
68 |
-
# ---------------------------------------------------------------------
|
69 |
-
@spaces.GPU(duration=300)
|
70 |
-
def load_musicgen_model():
|
71 |
-
global musicgen_model, musicgen_processor
|
72 |
-
if musicgen_model is None or musicgen_processor is None:
|
73 |
-
try:
|
74 |
-
print("Loading MusicGen model...")
|
75 |
-
musicgen_model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
|
76 |
-
musicgen_processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
|
77 |
-
print("MusicGen model loaded successfully.")
|
78 |
-
except Exception as e:
|
79 |
-
print(f"Error loading MusicGen model: {e}")
|
80 |
-
return None, str(e)
|
81 |
-
return musicgen_model, musicgen_processor
|
82 |
|
83 |
# ---------------------------------------------------------------------
|
84 |
-
#
|
85 |
# ---------------------------------------------------------------------
|
86 |
@spaces.GPU(duration=300)
|
87 |
def generate_audio(prompt: str, audio_length: int):
|
88 |
-
global musicgen_model, musicgen_processor
|
89 |
-
if musicgen_model is None or musicgen_processor is None:
|
90 |
-
musicgen_model, musicgen_processor = load_musicgen_model()
|
91 |
-
if isinstance(musicgen_model, str):
|
92 |
-
return musicgen_model
|
93 |
try:
|
94 |
-
musicgen_model.
|
|
|
|
|
|
|
95 |
inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt")
|
96 |
outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length)
|
97 |
musicgen_model.to("cpu") # Return the model to CPU
|
@@ -106,21 +69,17 @@ def generate_audio(prompt: str, audio_length: int):
|
|
106 |
except Exception as e:
|
107 |
return f"Error generating audio: {e}"
|
108 |
|
|
|
109 |
# ---------------------------------------------------------------------
|
110 |
# Gradio Interface
|
111 |
# ---------------------------------------------------------------------
|
112 |
-
def
|
113 |
-
|
114 |
-
pipeline_llama = load_llama_pipeline_zero_gpu(llama_model_id, hf_token)
|
115 |
-
if isinstance(pipeline_llama, str):
|
116 |
-
return pipeline_llama, None
|
117 |
|
118 |
-
# Generate Script
|
119 |
-
script = generate_script(user_prompt, pipeline_llama)
|
120 |
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
|
125 |
# ---------------------------------------------------------------------
|
126 |
# Interface
|
@@ -129,8 +88,13 @@ with gr.Blocks() as demo:
|
|
129 |
gr.Markdown("# 🎧 AI Radio Imaging with Llama 3 + MusicGen (Zero GPU)")
|
130 |
|
131 |
with gr.Row():
|
132 |
-
user_prompt = gr.Textbox(
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
134 |
audio_length = gr.Slider(label="Audio Length (tokens)", minimum=128, maximum=1024, step=64, value=512)
|
135 |
|
136 |
generate_script_button = gr.Button("Generate Script")
|
@@ -139,15 +103,15 @@ with gr.Blocks() as demo:
|
|
139 |
audio_output = gr.Audio(label="Generated Audio", type="filepath")
|
140 |
|
141 |
generate_script_button.click(
|
142 |
-
fn=
|
143 |
inputs=[user_prompt, llama_model_id],
|
144 |
-
outputs=script_output
|
145 |
)
|
146 |
|
147 |
generate_audio_button.click(
|
148 |
-
fn=
|
149 |
inputs=[script_output, audio_length],
|
150 |
-
outputs=audio_output
|
151 |
)
|
152 |
|
153 |
# ---------------------------------------------------------------------
|
|
|
6 |
AutoModelForCausalLM,
|
7 |
pipeline,
|
8 |
AutoProcessor,
|
9 |
+
MusicgenForConditionalGeneration,
|
10 |
)
|
11 |
from scipy.io.wavfile import write
|
12 |
import tempfile
|
|
|
17 |
load_dotenv()
|
18 |
hf_token = os.getenv("HF_TOKEN")
|
19 |
|
|
|
|
|
|
|
|
|
20 |
|
21 |
# ---------------------------------------------------------------------
|
22 |
+
# Load Llama 3 Pipeline with Zero GPU (Encapsulated)
|
23 |
# ---------------------------------------------------------------------
|
24 |
@spaces.GPU(duration=300) # Adjust GPU allocation duration
|
25 |
+
def generate_script(user_prompt: str, model_id: str, token: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
try:
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
|
28 |
+
model = AutoModelForCausalLM.from_pretrained(
|
29 |
+
model_id,
|
30 |
+
use_auth_token=token,
|
31 |
+
torch_dtype=torch.float16,
|
32 |
+
device_map="auto",
|
33 |
+
trust_remote_code=True,
|
34 |
+
)
|
35 |
+
llama_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
36 |
+
|
37 |
system_prompt = (
|
38 |
"You are a top-tier radio imaging producer using Llama 3. "
|
39 |
"Take the user's concept and craft a short, creative promo script."
|
40 |
)
|
41 |
+
combined_prompt = f"{system_prompt}\nUser concept: {user_prompt}\nRefined script:"
|
42 |
+
result = llama_pipeline(combined_prompt, max_new_tokens=200, do_sample=True, temperature=0.9)
|
43 |
+
return result[0]["generated_text"].split("Refined script:")[-1].strip()
|
44 |
except Exception as e:
|
45 |
return f"Error generating script: {e}"
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
# ---------------------------------------------------------------------
|
49 |
+
# Load MusicGen Model (Encapsulated)
|
50 |
# ---------------------------------------------------------------------
|
51 |
@spaces.GPU(duration=300)
|
52 |
def generate_audio(prompt: str, audio_length: int):
|
|
|
|
|
|
|
|
|
|
|
53 |
try:
|
54 |
+
musicgen_model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
|
55 |
+
musicgen_processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
|
56 |
+
|
57 |
+
musicgen_model.to("cuda")
|
58 |
inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt")
|
59 |
outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length)
|
60 |
musicgen_model.to("cpu") # Return the model to CPU
|
|
|
69 |
except Exception as e:
|
70 |
return f"Error generating audio: {e}"
|
71 |
|
72 |
+
|
73 |
# ---------------------------------------------------------------------
|
74 |
# Gradio Interface
|
75 |
# ---------------------------------------------------------------------
|
76 |
+
def interface_generate_script(user_prompt, llama_model_id):
|
77 |
+
return generate_script(user_prompt, llama_model_id, hf_token)
|
|
|
|
|
|
|
78 |
|
|
|
|
|
79 |
|
80 |
+
def interface_generate_audio(script, audio_length):
|
81 |
+
return generate_audio(script, audio_length)
|
82 |
+
|
83 |
|
84 |
# ---------------------------------------------------------------------
|
85 |
# Interface
|
|
|
88 |
gr.Markdown("# 🎧 AI Radio Imaging with Llama 3 + MusicGen (Zero GPU)")
|
89 |
|
90 |
with gr.Row():
|
91 |
+
user_prompt = gr.Textbox(
|
92 |
+
label="Enter your promo idea",
|
93 |
+
placeholder="E.g., A 15-second hype jingle for a morning talk show.",
|
94 |
+
)
|
95 |
+
llama_model_id = gr.Textbox(
|
96 |
+
label="Llama 3 Model ID", value="meta-llama/Meta-Llama-3-8B-Instruct"
|
97 |
+
)
|
98 |
audio_length = gr.Slider(label="Audio Length (tokens)", minimum=128, maximum=1024, step=64, value=512)
|
99 |
|
100 |
generate_script_button = gr.Button("Generate Script")
|
|
|
103 |
audio_output = gr.Audio(label="Generated Audio", type="filepath")
|
104 |
|
105 |
generate_script_button.click(
|
106 |
+
fn=interface_generate_script,
|
107 |
inputs=[user_prompt, llama_model_id],
|
108 |
+
outputs=script_output,
|
109 |
)
|
110 |
|
111 |
generate_audio_button.click(
|
112 |
+
fn=interface_generate_audio,
|
113 |
inputs=[script_output, audio_length],
|
114 |
+
outputs=audio_output,
|
115 |
)
|
116 |
|
117 |
# ---------------------------------------------------------------------
|