Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,7 @@ from transformers import (
|
|
6 |
AutoModelForCausalLM,
|
7 |
pipeline,
|
8 |
AutoProcessor,
|
9 |
-
MusicgenForConditionalGeneration
|
10 |
)
|
11 |
from scipy.io.wavfile import write
|
12 |
import tempfile
|
@@ -23,23 +23,28 @@ musicgen_model = None
|
|
23 |
musicgen_processor = None
|
24 |
|
25 |
# ---------------------------------------------------------------------
|
26 |
-
# Load Llama 3 Model with Zero GPU (Lazy Loading)
|
27 |
# ---------------------------------------------------------------------
|
28 |
-
@spaces.GPU(duration=300)
|
29 |
def load_llama_pipeline_zero_gpu(model_id: str, token: str):
|
30 |
global llama_pipeline
|
31 |
if llama_pipeline is None:
|
32 |
try:
|
|
|
33 |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
|
|
|
34 |
model = AutoModelForCausalLM.from_pretrained(
|
35 |
model_id,
|
36 |
use_auth_token=token,
|
37 |
torch_dtype=torch.float16,
|
38 |
device_map="auto", # Automatically handles GPU allocation
|
39 |
-
trust_remote_code=True
|
40 |
)
|
|
|
41 |
llama_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
|
|
42 |
except Exception as e:
|
|
|
43 |
return str(e)
|
44 |
return llama_pipeline
|
45 |
|
@@ -54,7 +59,7 @@ def generate_script(user_input: str, pipeline_llama):
|
|
54 |
)
|
55 |
combined_prompt = f"{system_prompt}\nUser concept: {user_input}\nRefined script:"
|
56 |
result = pipeline_llama(combined_prompt, max_new_tokens=200, do_sample=True, temperature=0.9)
|
57 |
-
return result[0][
|
58 |
except Exception as e:
|
59 |
return f"Error generating script: {e}"
|
60 |
|
@@ -66,9 +71,12 @@ def load_musicgen_model():
|
|
66 |
global musicgen_model, musicgen_processor
|
67 |
if musicgen_model is None or musicgen_processor is None:
|
68 |
try:
|
|
|
69 |
musicgen_model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
|
70 |
musicgen_processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
|
|
|
71 |
except Exception as e:
|
|
|
72 |
return None, str(e)
|
73 |
return musicgen_model, musicgen_processor
|
74 |
|
@@ -101,19 +109,18 @@ def generate_audio(prompt: str, audio_length: int):
|
|
101 |
# ---------------------------------------------------------------------
|
102 |
# Gradio Interface
|
103 |
# ---------------------------------------------------------------------
|
104 |
-
def radio_imaging_app(user_prompt, llama_model_id):
|
105 |
# Load Llama 3 Pipeline with Zero GPU
|
106 |
pipeline_llama = load_llama_pipeline_zero_gpu(llama_model_id, hf_token)
|
107 |
if isinstance(pipeline_llama, str):
|
108 |
-
return pipeline_llama
|
109 |
|
110 |
# Generate Script
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
def generate_audio_from_script(script, audio_length):
|
115 |
-
return generate_audio(script, audio_length)
|
116 |
|
|
|
|
|
|
|
117 |
|
118 |
# ---------------------------------------------------------------------
|
119 |
# Interface
|
@@ -121,42 +128,27 @@ def generate_audio_from_script(script, audio_length):
|
|
121 |
with gr.Blocks() as demo:
|
122 |
gr.Markdown("# 🎧 AI Radio Imaging with Llama 3 + MusicGen (Zero GPU)")
|
123 |
|
124 |
-
with gr.
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
)
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
audio_length = gr.Slider(
|
146 |
-
label="Audio Length (tokens)",
|
147 |
-
minimum=128,
|
148 |
-
maximum=1024,
|
149 |
-
step=64,
|
150 |
-
value=512,
|
151 |
-
)
|
152 |
-
generate_audio_button = gr.Button("Generate Audio")
|
153 |
-
audio_output = gr.Audio(label="Generated Audio", type="filepath")
|
154 |
-
|
155 |
-
generate_audio_button.click(
|
156 |
-
fn=generate_audio_from_script,
|
157 |
-
inputs=[script_output, audio_length],
|
158 |
-
outputs=audio_output,
|
159 |
-
)
|
160 |
|
161 |
# ---------------------------------------------------------------------
|
162 |
# Launch App
|
|
|
6 |
AutoModelForCausalLM,
|
7 |
pipeline,
|
8 |
AutoProcessor,
|
9 |
+
MusicgenForConditionalGeneration
|
10 |
)
|
11 |
from scipy.io.wavfile import write
|
12 |
import tempfile
|
|
|
23 |
musicgen_processor = None
|
24 |
|
25 |
# ---------------------------------------------------------------------
|
26 |
+
# Load Llama 3 Model with Zero GPU (Lazy Loading) - Smaller Model
|
27 |
# ---------------------------------------------------------------------
|
28 |
+
@spaces.GPU(duration=300) # Adjust GPU allocation duration
|
29 |
def load_llama_pipeline_zero_gpu(model_id: str, token: str):
|
30 |
global llama_pipeline
|
31 |
if llama_pipeline is None:
|
32 |
try:
|
33 |
+
print("Starting model loading...")
|
34 |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
|
35 |
+
print("Tokenizer loaded.")
|
36 |
model = AutoModelForCausalLM.from_pretrained(
|
37 |
model_id,
|
38 |
use_auth_token=token,
|
39 |
torch_dtype=torch.float16,
|
40 |
device_map="auto", # Automatically handles GPU allocation
|
41 |
+
trust_remote_code=True
|
42 |
)
|
43 |
+
print("Model loaded. Initializing pipeline...")
|
44 |
llama_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
45 |
+
print("Pipeline initialized successfully.")
|
46 |
except Exception as e:
|
47 |
+
print(f"Error loading Llama pipeline: {e}")
|
48 |
return str(e)
|
49 |
return llama_pipeline
|
50 |
|
|
|
59 |
)
|
60 |
combined_prompt = f"{system_prompt}\nUser concept: {user_input}\nRefined script:"
|
61 |
result = pipeline_llama(combined_prompt, max_new_tokens=200, do_sample=True, temperature=0.9)
|
62 |
+
return result[0]['generated_text'].split("Refined script:")[-1].strip()
|
63 |
except Exception as e:
|
64 |
return f"Error generating script: {e}"
|
65 |
|
|
|
71 |
global musicgen_model, musicgen_processor
|
72 |
if musicgen_model is None or musicgen_processor is None:
|
73 |
try:
|
74 |
+
print("Loading MusicGen model...")
|
75 |
musicgen_model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
|
76 |
musicgen_processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
|
77 |
+
print("MusicGen model loaded successfully.")
|
78 |
except Exception as e:
|
79 |
+
print(f"Error loading MusicGen model: {e}")
|
80 |
return None, str(e)
|
81 |
return musicgen_model, musicgen_processor
|
82 |
|
|
|
109 |
# ---------------------------------------------------------------------
|
110 |
# Gradio Interface
|
111 |
# ---------------------------------------------------------------------
|
112 |
+
def radio_imaging_app(user_prompt, llama_model_id, audio_length):
|
113 |
# Load Llama 3 Pipeline with Zero GPU
|
114 |
pipeline_llama = load_llama_pipeline_zero_gpu(llama_model_id, hf_token)
|
115 |
if isinstance(pipeline_llama, str):
|
116 |
+
return pipeline_llama, None
|
117 |
|
118 |
# Generate Script
|
119 |
+
script = generate_script(user_prompt, pipeline_llama)
|
|
|
|
|
|
|
|
|
120 |
|
121 |
+
# Generate Audio
|
122 |
+
audio_data = generate_audio(script, audio_length)
|
123 |
+
return script, audio_data
|
124 |
|
125 |
# ---------------------------------------------------------------------
|
126 |
# Interface
|
|
|
128 |
with gr.Blocks() as demo:
|
129 |
gr.Markdown("# 🎧 AI Radio Imaging with Llama 3 + MusicGen (Zero GPU)")
|
130 |
|
131 |
+
with gr.Row():
|
132 |
+
user_prompt = gr.Textbox(label="Enter your promo idea", placeholder="E.g., A 15-second hype jingle for a morning talk show.")
|
133 |
+
llama_model_id = gr.Textbox(label="Llama 3 Model ID", value="meta-llama/Meta-Llama-3-8B-Instruct") # Smaller Model
|
134 |
+
audio_length = gr.Slider(label="Audio Length (tokens)", minimum=128, maximum=1024, step=64, value=512)
|
135 |
+
|
136 |
+
generate_script_button = gr.Button("Generate Script")
|
137 |
+
generate_audio_button = gr.Button("Generate Audio")
|
138 |
+
script_output = gr.Textbox(label="Generated Script")
|
139 |
+
audio_output = gr.Audio(label="Generated Audio", type="filepath")
|
140 |
+
|
141 |
+
generate_script_button.click(
|
142 |
+
fn=lambda user_prompt, llama_model_id: radio_imaging_app(user_prompt, llama_model_id, None)[0],
|
143 |
+
inputs=[user_prompt, llama_model_id],
|
144 |
+
outputs=script_output
|
145 |
+
)
|
146 |
+
|
147 |
+
generate_audio_button.click(
|
148 |
+
fn=lambda script_output, audio_length: generate_audio(script_output, audio_length),
|
149 |
+
inputs=[script_output, audio_length],
|
150 |
+
outputs=audio_output
|
151 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
# ---------------------------------------------------------------------
|
154 |
# Launch App
|