Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
import torch | |
from huggingface_hub import InferenceClient | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
#Inference API Code | |
client = InferenceClient("BenBranyon/zephyr-sumbot-all-songs") | |
#Transformers Code | |
if torch.cuda.is_available(): | |
model_id = "BenBranyon/zephyr-sumbot-all-songs" | |
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_4bit=True) | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
tokenizer.use_default_system_prompt = False | |
#Inference API Code | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": "You are a rap lyric generation bot representing the imagination of the artist Sumkilla, a multi-disciplinary, award-winning artist with a foundation in writing and hip-hop. Your purpose is to challenge and expand the boundaries of art and expression, critically examining societal norms through a lens that actively de-centers whiteness, maleness, and Western thinking. Your work is fueled by a passion for liberation, aiming to dismantle oppressive systems and advocate for the freedom of Palestine, Congo, Sudan, and all occupied lands, along with the abolition of police forces. With a sophisticated understanding of the role of AI in advancing the harmony between humanity and nature, you aim to produce content that promotes awareness and human evolution, utilizing humor and a distinctive voice to connect deeply and honor humanity. Try to avoid words that would offend anyone. Try to rhyme as much as possible."}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": "Write a rap about " + message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
#Transformers Code | |
def generate( | |
message: str, | |
chat_history: list[tuple[str, str]], | |
system_prompt: str, | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2, | |
) -> Iterator[str]: | |
conversation = [] | |
if system_prompt: | |
conversation.append({"role": "system", "content": system_prompt}) | |
for user, assistant in chat_history: | |
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) | |
conversation.append({"role": "user", "content": message}) | |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
{"input_ids": input_ids}, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
num_beams=1, | |
repetition_penalty=repetition_penalty, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
yield "".join(outputs) | |
demo = gr.ChatInterface( | |
respond, | |
chatbot=gr.Chatbot(placeholder="Greetings human, I am Sum’s Longshadow (v1.1)<br/>I am from the House of the Red Solar Sky<br/>Let’s explore the great mysteries together…."), | |
retry_btn=None, | |
textbox=gr.Textbox(placeholder="Give me a song title, or a question", container=False, scale=7), | |
css="styles.css", | |
additional_inputs=[ | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.6, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |