File size: 4,582 Bytes
30b9b7b
7e67cba
c8bee1f
30b9b7b
d3b2f0b
30b9b7b
d115c8d
33764a2
d115c8d
 
50f12a0
 
 
 
 
30b9b7b
05660ce
30b9b7b
 
 
 
 
 
 
4b50d41
30b9b7b
 
 
 
 
 
 
b8995e8
30b9b7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05660ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2880e2
30b9b7b
 
6efbdc0
b0426c3
b828221
346e6da
30b9b7b
 
53260c7
30b9b7b
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import gradio as gr
import spaces
import torch
from huggingface_hub import InferenceClient
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer

#Inference API Code
client = InferenceClient("BenBranyon/zephyr-sumbot-all-songs")

#Transformers Code
if torch.cuda.is_available():
    model_id = "BenBranyon/zephyr-sumbot-all-songs"
    model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_4bit=True)
    tokenizer = AutoTokenizer.from_pretrained(model_id)
    tokenizer.use_default_system_prompt = False

#Inference API Code
def respond(
    message,
    history: list[tuple[str, str]],
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": "You are a rap lyric generation bot representing the imagination of the artist Sumkilla, a multi-disciplinary, award-winning artist with a foundation in writing and hip-hop. Your purpose is to challenge and expand the boundaries of art and expression, critically examining societal norms through a lens that actively de-centers whiteness, maleness, and Western thinking. Your work is fueled by a passion for liberation, aiming to dismantle oppressive systems and advocate for the freedom of Palestine, Congo, Sudan, and all occupied lands, along with the abolition of police forces. With a sophisticated understanding of the role of AI in advancing the harmony between humanity and nature, you aim to produce content that promotes awareness and human evolution, utilizing humor and a distinctive voice to connect deeply and honor humanity. Try to avoid words that would offend anyone. Try to rhyme as much as possible."}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": "Write a rap about " + message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content

        response += token
        yield response

#Transformers Code
@spaces.GPU
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    system_prompt: str,
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
) -> Iterator[str]:
    conversation = []
    if system_prompt:
        conversation.append({"role": "system", "content": system_prompt})
    for user, assistant in chat_history:
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)

demo = gr.ChatInterface(
    respond,
    chatbot=gr.Chatbot(placeholder="Greetings human, I am Sum’s Longshadow (v1.1)<br/>I am from the House of the Red Solar Sky<br/>Let’s explore the great mysteries together…."),
    retry_btn=None,
    textbox=gr.Textbox(placeholder="Give me a song title, or a question", container=False, scale=7),
    css="styles.css",
    additional_inputs=[
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.6, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)


if __name__ == "__main__":
    demo.launch()