Spaces:
Running
Running
# SegVol: Universal and Interactive Volumetric Medical Image Segmentation | |
This repo is the official implementation of [SegVol: Universal and Interactive Volumetric Medical Image Segmentation](https://arxiv.org/abs/2311.13385). | |
## News๐ | |
(2023.11.24) *You can download weight files of SegVol and ViT(CTs pre-train) [here](https://drive.google.com/drive/folders/1TEJtgctH534Ko5r4i79usJvqmXVuLf54?usp=drive_link).* ๐ฅ | |
(2023.11.23) *The brief introduction and instruction have been uploaded.* | |
(2023.11.23) *The inference demo code has been uploaded.* | |
(2023.11.22) *The first edition of our paper has been uploaded to arXiv.* ๐ | |
## Introduction | |
<img src="https://github.com/BAAI-DCAI/SegVol/blob/main/asset/overview.png" width="60%" height="60%"> | |
The SegVol is a universal and interactive model for volumetric medical image segmentation. SegVol accepts **point**, **box** and **text** prompt while output volumetric segmentation. By training on 90k unlabeled Computed Tomography (CT) volumes and 6k labeled CTs, this foundation model supports the segmentation of over 200 anatomical categories. | |
We will release SegVol's **inference code**, **training code**, **model params** and **ViT pre-training params** (pre-training is performed over 2,000 epochs on 96k CTs). | |
## Usage | |
### Requirements | |
The [pytorch v1.11.0](https://pytorch.org/get-started/previous-versions/) (or higher virsion) is needed first. Following install key requirements using commands: | |
``` | |
pip install 'monai[all]==0.9.0' | |
pip install einops==0.6.1 | |
pip install transformers==4.18.0 | |
pip install matplotlib | |
``` | |
### Config and run demo script | |
1. You can download the demo case [here](https://drive.google.com/drive/folders/1TEJtgctH534Ko5r4i79usJvqmXVuLf54?usp=drive_link), or download the whole demo dataset [AbdomenCT-1K](https://github.com/JunMa11/AbdomenCT-1K) and choose any demo case you want. | |
2. Please set CT path and Ground Truth path of the case in the [config_demo.json](https://github.com/BAAI-DCAI/SegVol/blob/main/config/config_demo.json). | |
3. After that, config the [inference_demo.sh](https://github.com/BAAI-DCAI/SegVol/blob/main/script/inference_demo.sh) file for execution: | |
- `$segvol_ckpt`: the path of SegVol's checkpoint (Download from [here](https://drive.google.com/drive/folders/1TEJtgctH534Ko5r4i79usJvqmXVuLf54?usp=drive_link)). | |
- `$work_dir`: any path of folder you want to save the log files and visualizaion results. | |
4. Finally, you can control the **prompt type**, **zoom-in-zoom-out mechanism** and **visualizaion switch** [here](https://github.com/BAAI-DCAI/SegVol/blob/35f3ff9c943a74f630e6948051a1fe21aaba91bc/inference_demo.py#L208C11-L208C11). | |
5. Now, just run `bash script/inference_demo.sh` to infer your demo case. | |
## Citation | |
If you find this repository helpful, please consider citing: | |
``` | |
@misc{du2023segvol, | |
title={SegVol: Universal and Interactive Volumetric Medical Image Segmentation}, | |
author={Yuxin Du and Fan Bai and Tiejun Huang and Bo Zhao}, | |
year={2023}, | |
eprint={2311.13385}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CV} | |
} | |
``` | |
## Acknowledgement | |
Thanks for the following amazing works: | |
[HuggingFace](https://huggingface.co./). | |
[CLIP](https://github.com/openai/CLIP). | |
[MONAI](https://github.com/Project-MONAI/MONAI). | |
[Image by brgfx](https://www.freepik.com/free-vector/anatomical-structure-human-bodies_26353260.htm) on Freepik. | |
[Image by muammark](https://www.freepik.com/free-vector/people-icon-collection_1157380.htm#query=user&position=2&from_view=search&track=sph) on Freepik. | |
[Image by pch.vector](https://www.freepik.com/free-vector/different-phone-hand-gestures-set_9649376.htm#query=Vector%20touch%20screen%20hand%20gestures&position=4&from_view=search&track=ais) on Freepik. | |
[Image by starline](https://www.freepik.com/free-vector/set-three-light-bulb-represent-effective-business-idea-concept_37588597.htm#query=idea&position=0&from_view=search&track=sph) on Freepik. | |