Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
# Initialize the client with your model from Hugging Face Hub | |
client = InferenceClient("Arnic/gemma2-2b-it-Pubmed20k-TPU") | |
# Define the function to handle chat responses | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
# System message to set the chatbot's tone | |
system_message = ( | |
"You are a good listener. You advise relaxation exercises, suggest avoiding negative thoughts, " | |
"and guide through steps to manage stress. Let's discuss what's on your mind, " | |
"or ask me for a quick relaxation exercise." | |
) | |
# Format prompt with system message, chat history, and user message | |
prompt = system_message + "\n\n" | |
for user_msg, bot_reply in history: | |
prompt += f"User: {user_msg}\nAssistant: {bot_reply}\n" | |
prompt += f"User: {message}\nAssistant:" | |
# Call the text generation API | |
response = client.text_generation( | |
prompt=prompt, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p | |
) | |
# Extract the response text and yield it as output | |
generated_text = response.get("generated_text", "").replace(prompt, "").strip() | |
yield generated_text | |
# Gradio UI setup | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |