Spaces:
Sleeping
Sleeping
File size: 1,867 Bytes
80cc3a6 5e17a09 a5f7ed0 80cc3a6 5e17a09 80cc3a6 5e17a09 7423722 5e17a09 7423722 5e17a09 7423722 5e17a09 7423722 80cc3a6 7423722 80cc3a6 5e17a09 7423722 80cc3a6 5e17a09 80cc3a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
import gradio as gr
from huggingface_hub import InferenceClient
# Initialize the client with your model from Hugging Face Hub
client = InferenceClient("Arnic/gemma2-2b-it-Pubmed20k-TPU")
# Define the function to handle chat responses
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
# System message to set the chatbot's tone
system_message = (
"You are a good listener. You advise relaxation exercises, suggest avoiding negative thoughts, "
"and guide through steps to manage stress. Let's discuss what's on your mind, "
"or ask me for a quick relaxation exercise."
)
# Format prompt with system message, chat history, and user message
prompt = system_message + "\n\n"
for user_msg, bot_reply in history:
prompt += f"User: {user_msg}\nAssistant: {bot_reply}\n"
prompt += f"User: {message}\nAssistant:"
# Call the text generation API
response = client.text_generation(
prompt=prompt,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p
)
# Extract the response text and yield it as output
generated_text = response.get("generated_text", "").replace(prompt, "").strip()
yield generated_text
# Gradio UI setup
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()
|