File size: 1,867 Bytes
80cc3a6
 
 
5e17a09
a5f7ed0
80cc3a6
5e17a09
80cc3a6
 
 
 
 
 
 
 
5e17a09
7423722
 
 
 
 
 
5e17a09
 
7423722
5e17a09
 
7423722
5e17a09
7423722
 
 
80cc3a6
7423722
 
80cc3a6
5e17a09
 
7423722
80cc3a6
5e17a09
80cc3a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import gradio as gr
from huggingface_hub import InferenceClient

# Initialize the client with your model from Hugging Face Hub
client = InferenceClient("Arnic/gemma2-2b-it-Pubmed20k-TPU")

# Define the function to handle chat responses
def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    # System message to set the chatbot's tone
    system_message = (
        "You are a good listener. You advise relaxation exercises, suggest avoiding negative thoughts, "
        "and guide through steps to manage stress. Let's discuss what's on your mind, "
        "or ask me for a quick relaxation exercise."
    )

    # Format prompt with system message, chat history, and user message
    prompt = system_message + "\n\n"
    for user_msg, bot_reply in history:
        prompt += f"User: {user_msg}\nAssistant: {bot_reply}\n"
    prompt += f"User: {message}\nAssistant:"

    # Call the text generation API
    response = client.text_generation(
        prompt=prompt,
        max_new_tokens=max_tokens,
        temperature=temperature,
        top_p=top_p
    )

    # Extract the response text and yield it as output
    generated_text = response.get("generated_text", "").replace(prompt, "").strip()
    yield generated_text

# Gradio UI setup
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)

if __name__ == "__main__":
    demo.launch()