Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,10 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
4 |
-
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
client = InferenceClient("Arnic/gemma2-2b-it-Pubmed20k-TPU")
|
8 |
|
9 |
-
|
10 |
def respond(
|
11 |
message,
|
12 |
history: list[tuple[str, str]],
|
@@ -15,35 +13,35 @@ def respond(
|
|
15 |
temperature,
|
16 |
top_p,
|
17 |
):
|
18 |
-
system_message =
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
35 |
temperature=temperature,
|
36 |
-
top_p=top_p
|
37 |
-
)
|
38 |
-
token = message.choices[0].delta.content
|
39 |
-
|
40 |
-
response += token
|
41 |
-
yield response
|
42 |
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
46 |
-
"""
|
47 |
demo = gr.ChatInterface(
|
48 |
respond,
|
49 |
additional_inputs=[
|
@@ -60,6 +58,5 @@ demo = gr.ChatInterface(
|
|
60 |
],
|
61 |
)
|
62 |
|
63 |
-
|
64 |
if __name__ == "__main__":
|
65 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
4 |
+
# Initialize the client with your model
|
|
|
|
|
5 |
client = InferenceClient("Arnic/gemma2-2b-it-Pubmed20k-TPU")
|
6 |
|
7 |
+
# Define response function
|
8 |
def respond(
|
9 |
message,
|
10 |
history: list[tuple[str, str]],
|
|
|
13 |
temperature,
|
14 |
top_p,
|
15 |
):
|
16 |
+
system_message = (
|
17 |
+
"You are a good listener. You advise relaxation exercises, suggest avoiding negative thoughts, "
|
18 |
+
"and guide through steps to manage stress. Let's discuss what's on your mind, "
|
19 |
+
"or ask me for a quick relaxation exercise."
|
20 |
+
)
|
21 |
+
|
22 |
+
# Format history and system message as prompt text
|
23 |
+
chat_history = ""
|
24 |
+
for user_msg, bot_reply in history:
|
25 |
+
if user_msg:
|
26 |
+
chat_history += f"User: {user_msg}\n"
|
27 |
+
if bot_reply:
|
28 |
+
chat_history += f"Assistant: {bot_reply}\n"
|
29 |
+
|
30 |
+
prompt = f"{system_message}\n\n{chat_history}User: {message}\nAssistant:"
|
31 |
+
|
32 |
+
# Generate response using the InferenceClient text generation method
|
33 |
+
response = client.text_generation(
|
34 |
+
prompt=prompt,
|
35 |
+
max_new_tokens=max_tokens,
|
36 |
temperature=temperature,
|
37 |
+
top_p=top_p
|
38 |
+
)
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
# Extract and yield the text response
|
41 |
+
generated_text = response["generated_text"].replace(prompt, "").strip()
|
42 |
+
yield generated_text
|
43 |
|
44 |
+
# Set up Gradio interface
|
|
|
|
|
45 |
demo = gr.ChatInterface(
|
46 |
respond,
|
47 |
additional_inputs=[
|
|
|
58 |
],
|
59 |
)
|
60 |
|
|
|
61 |
if __name__ == "__main__":
|
62 |
demo.launch()
|