Spaces:
Sleeping
Sleeping
import os | |
from huggingface_hub import login, hf_hub_download | |
import pandas as pd | |
import gradio as gr | |
from llama_cpp import Llama | |
import chromadb | |
from sentence_transformers import SentenceTransformer | |
from deep_translator import GoogleTranslator # Changed from googletrans to deep_translator | |
import re | |
import requests # Import the requests library | |
# Charger le token depuis les secrets | |
hf_token = os.getenv("HF_TOKEN") | |
login(token=hf_token) | |
# Charger le dataset depuis un fichier CSV local | |
csv_file = "/content/indian_food (1).csv" | |
try: | |
df = pd.read_csv(csv_file) | |
print("Dataset chargé avec succès depuis le fichier CSV local.") | |
except FileNotFoundError: | |
print(f"Erreur: Fichier CSV non trouvé à l'emplacement: {csv_file}") | |
exit() | |
except Exception as e: | |
print(f"Erreur lors du chargement du CSV: {e}") | |
exit() | |
# Initialisation du modèle Llama | |
llm = None # Initialize to None | |
try: | |
# Use /tmp for the model path within Hugging Face Spaces | |
model_path = hf_hub_download( | |
repo_id="TheBloke/CapybaraHermes-2.5-Mistral-7B-GGUF", | |
filename="capybarahermes-2.5-mistral-7b.Q2_K.gguf", | |
cache_dir="/tmp" # Store the model in /tmp | |
) | |
llm = Llama( | |
model_path=model_path, | |
n_ctx=2048, | |
) | |
print("Llama model loaded successfully.") | |
except Exception as e: | |
print(f"Error loading Llama model: {e}") | |
# Initialisation de ChromaDB Vector Store | |
class VectorStore: | |
def __init__(self, collection_name): | |
self.embedding_model = SentenceTransformer('sentence-transformers/multi-qa-MiniLM-L6-cos-v1') | |
self.chroma_client = chromadb.Client() | |
if collection_name in self.chroma_client.list_collections(): | |
self.chroma_client.delete_collection(collection_name) | |
self.collection = self.chroma_client.create_collection(name=collection_name) | |
def populate_vectors(self, df): | |
titles = df['name'].tolist() | |
ingredients = df['ingredients'].tolist() | |
diets = df['diet'].tolist() | |
prep_times = df['prep_time'].tolist() | |
# Load nutritional information, handling potentially missing columns and types | |
calories = df['calories'].astype(str).tolist() if 'calories' in df else ['None'] * len(df) | |
sugar = df['sugar'].astype(str).tolist() if 'sugar' in df else ['None'] * len(df) | |
gluten = df['gluten'].astype(str).tolist() if 'gluten' in df else ['None'] * len(df) | |
titles = titles[:2000] | |
ingredients = ingredients[:2000] | |
diets = diets[:2000] | |
prep_times = prep_times[:2000] | |
calories = calories[:2000] | |
sugar = sugar[:2000] | |
gluten = gluten[:2000] | |
texts = [ | |
f"Recipe: {title}. Ingredients: {ingredient}. Diet: {diet}. Prep Time: {prep_time} minutes. Calories: {calorie}. Sugar: {sugar}. Gluten: {gluten}." | |
for title, ingredient, diet, prep_time, calorie, sugar, gluten in zip(titles, ingredients, diets, prep_times, calories, sugar, gluten) | |
] | |
for i, item in enumerate(texts): | |
embeddings = self.embedding_model.encode(item).tolist() | |
self.collection.add(embeddings=[embeddings], documents=[item], ids=[str(i)]) | |
def search_context(self, query, n_results=1): | |
query_embedding = self.embedding_model.encode([query]).tolist() | |
results = self.collection.query(query_embeddings=query_embedding, n_results=n_results) | |
return results['documents'] | |
# Initialisation du store de vecteurs et peuplement | |
vector_store = None # Initialize to None | |
try: | |
vector_store = VectorStore("indian_food_embedding") | |
vector_store.populate_vectors(df) | |
print("Vector store initialized and populated.") | |
except Exception as e: | |
print(f"Error initializing or populating vector store: {e}") | |
# Replace the translate_text function with this new version | |
def translate_text(text, target_language='en'): | |
"""Translates the given text to the target language.""" | |
try: | |
if target_language == 'en': | |
translator = GoogleTranslator(source='auto', target='en') | |
else: | |
translator = GoogleTranslator(source='en', target=target_language) | |
translated_text = translator.translate(text) | |
return translated_text | |
except Exception as e: | |
print(f"Translation error: {e}") | |
print(f"Detailed error: {type(e).__name__}, {e}") # Print more details for debugging. | |
return text # Return original text if translation fails | |
def generate_text(message, max_tokens=600, temperature=0.3, top_p=0.95, | |
gluten_free=False, dairy_free=False, allergies="", input_language='en'): # Added input_language | |
if llm is None: | |
return "Error: Llama model could not be loaded. Please check the console for errors." | |
if vector_store is None: | |
return "Error: Vector store could not be initialized. Please check the console for errors." | |
# Translate the input message to English | |
message_en = message | |
if input_language != 'en': | |
try: | |
message_en = translate_text(message, target_language='en') | |
except Exception as e: | |
print(f"Error translating input message: {e}") | |
return "Error translating input. Please try again in English." | |
context = "" | |
query = message_en | |
if gluten_free: | |
query += " gluten-free" | |
if dairy_free: | |
query += " dairy-free" | |
if allergies: | |
query += f" avoid ingredients: {allergies}" | |
try: | |
context_results = vector_store.search_context(query, n_results=1) | |
if context_results and isinstance(context_results, list): | |
context = context_results[0] if context_results else "" | |
else: | |
context = "" # or handle the error appropriately | |
print("Warning: No context found or invalid context format.") | |
except Exception as e: | |
return f"Error searching vector store: {e}" | |
prompt_template = ( | |
f"SYSTEM: You are a helpful recipe generating bot specializing in Indian cuisine, assisting with dietary restrictions.\n" | |
f"SYSTEM: Here is some context:\n{context}\n" | |
f"USER: {message_en}\n" # Use the English translated message | |
f"ASSISTANT:\n" | |
) | |
try: | |
output = llm( | |
prompt_template, | |
temperature=temperature, | |
top_p=top_p, | |
top_k=40, | |
repeat_penalty=1.1, | |
max_tokens=max_tokens, | |
) | |
input_string = output['choices'][0]['text'].strip() | |
cleaned_text = input_string.strip("[]'").replace('\\n', '\n') | |
continuous_text = '\n'.join(cleaned_text.split('\n')) | |
# Translate the output back to the input language | |
output_text = continuous_text | |
if input_language != 'en': | |
try: | |
output_text = translate_text(continuous_text, target_language=input_language) | |
except Exception as e: | |
print(f"Error translating output message: {e}") | |
output_text = "Error translating output. Here is the English version:\n\n" + continuous_text | |
# Gluten Check on Output | |
if context and isinstance(context, str): | |
context_lower = context.lower() | |
if "gluten: yes" in context_lower: | |
output_text += "\n\nWarning: This recipe contains gluten." | |
elif "gluten: no" in context_lower: | |
output_text += "\n\nGood news! This recipe is gluten-free." | |
return output_text | |
except Exception as e: | |
return f"Error generating text: {e}" | |
demo = gr.Interface( | |
fn=generate_text, | |
inputs=[ | |
gr.Textbox(lines=2, placeholder="Enter your message here...", label="Message"), | |
gr.Slider(minimum=50, maximum=1000, value=600, step=50, label="Max Tokens"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.3, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.7, maximum=1.0, value=0.95, step=0.05, label="Top P"), | |
gr.Checkbox(label="Gluten-Free"), | |
gr.Checkbox(label="Dairy-Free"), | |
gr.Textbox(lines=1, placeholder="e.g., peanuts, shellfish", label="Allergies (comma-separated)"), | |
gr.Dropdown(choices=['en', 'hi'], value='en', label="Input Language (en=English, hi=Hindi/Hinglish)"), # Added language selection | |
], | |
outputs=gr.Textbox(label="Generated Text"), | |
title="Indian Recipe Bot", | |
description="Running LLM with context retrieval from ChromaDB. Supports dietary restrictions, allergies, and Hinglish input/output!", | |
examples=[ | |
["mujhe chawal aur dal hai, main kya bana sakta hoon jo gluten-free ho?", 600, 0.3, 0.95, True, False, "", 'hi'], | |
["Suggest a vegetarian dish with spinach and no nuts.", 600, 0.3, 0.95, False, False, "nuts", 'en'], | |
], | |
cache_examples=False, | |
) | |
if __name__ == "__main__": | |
demo.launch() |