Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,61 +1,81 @@
|
|
1 |
import os
|
2 |
-
import streamlit as st
|
3 |
from huggingface_hub import login, hf_hub_download
|
4 |
-
|
|
|
5 |
from llama_cpp import Llama
|
6 |
import chromadb
|
7 |
-
from chromadb.config import Settings # Added import for Settings
|
8 |
from sentence_transformers import SentenceTransformer
|
|
|
|
|
|
|
9 |
|
10 |
-
# Load Hugging Face token from environment variable
|
11 |
-
hf_token = os.getenv("HF_TOKEN")
|
12 |
-
if hf_token:
|
13 |
-
login(token=hf_token)
|
14 |
-
else:
|
15 |
-
raise ValueError("HF_TOKEN is not set. Please add it to your Hugging Face Space secrets.")
|
16 |
-
|
17 |
-
# Load dataset
|
18 |
-
dataset = load_dataset("Maryem2025/final_dataset")
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
repo_id="TheBloke/CapybaraHermes-2.5-Mistral-7B-GGUF",
|
24 |
filename="capybarahermes-2.5-mistral-7b.Q2_K.gguf",
|
25 |
-
|
26 |
-
)
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
#
|
31 |
class VectorStore:
|
32 |
def __init__(self, collection_name):
|
33 |
self.embedding_model = SentenceTransformer('sentence-transformers/multi-qa-MiniLM-L6-cos-v1')
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
))
|
39 |
-
if collection_name in [c.name for c in self.chroma_client.list_collections()]:
|
40 |
-
self.chroma_client.delete_collection(name=collection_name)
|
41 |
self.collection = self.chroma_client.create_collection(name=collection_name)
|
42 |
|
43 |
-
def populate_vectors(self,
|
44 |
-
titles =
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
texts = [
|
54 |
-
f"
|
55 |
-
|
56 |
-
f"Cuisine: {cuisine}. Calories: {calorie}."
|
57 |
-
for title, serving, total_time, course, section, instruction, cuisine, calorie
|
58 |
-
in zip(titles, servings, total_times, courses, sections, instructions, cuisines, calories)
|
59 |
]
|
60 |
|
61 |
for i, item in enumerate(texts):
|
@@ -65,48 +85,138 @@ class VectorStore:
|
|
65 |
def search_context(self, query, n_results=1):
|
66 |
query_embedding = self.embedding_model.encode([query]).tolist()
|
67 |
results = self.collection.query(query_embeddings=query_embedding, n_results=n_results)
|
68 |
-
return results['documents']
|
69 |
-
|
70 |
-
#
|
71 |
-
vector_store =
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
prompt_template = (
|
80 |
-
f"SYSTEM: You are a recipe generating bot.\n"
|
81 |
-
f"SYSTEM: {context}\n"
|
82 |
-
f"USER: {
|
83 |
f"ASSISTANT:\n"
|
84 |
)
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
-
if
|
106 |
-
|
107 |
-
with st.spinner("Generating recipe... 🍲"):
|
108 |
-
response = generate_text(user_input)
|
109 |
-
st.subheader("Generated Recipe:")
|
110 |
-
st.write(response)
|
111 |
-
else:
|
112 |
-
st.warning("Please enter a message.")
|
|
|
1 |
import os
|
|
|
2 |
from huggingface_hub import login, hf_hub_download
|
3 |
+
import pandas as pd
|
4 |
+
import gradio as gr
|
5 |
from llama_cpp import Llama
|
6 |
import chromadb
|
|
|
7 |
from sentence_transformers import SentenceTransformer
|
8 |
+
from deep_translator import GoogleTranslator # Changed from googletrans to deep_translator
|
9 |
+
import re
|
10 |
+
import requests # Import the requests library
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
# Charger le token depuis les secrets
|
14 |
+
hf_token = os.getenv("HF_TOKEN")
|
15 |
+
login(token=hf_token)
|
16 |
+
|
17 |
+
# Charger le dataset depuis un fichier CSV local
|
18 |
+
csv_file = "/content/indian_food (1).csv"
|
19 |
+
try:
|
20 |
+
df = pd.read_csv(csv_file)
|
21 |
+
print("Dataset chargé avec succès depuis le fichier CSV local.")
|
22 |
+
except FileNotFoundError:
|
23 |
+
print(f"Erreur: Fichier CSV non trouvé à l'emplacement: {csv_file}")
|
24 |
+
exit()
|
25 |
+
except Exception as e:
|
26 |
+
print(f"Erreur lors du chargement du CSV: {e}")
|
27 |
+
exit()
|
28 |
+
|
29 |
+
# Initialisation du modèle Llama
|
30 |
+
llm = None # Initialize to None
|
31 |
+
try:
|
32 |
+
# Use /tmp for the model path within Hugging Face Spaces
|
33 |
+
model_path = hf_hub_download(
|
34 |
repo_id="TheBloke/CapybaraHermes-2.5-Mistral-7B-GGUF",
|
35 |
filename="capybarahermes-2.5-mistral-7b.Q2_K.gguf",
|
36 |
+
cache_dir="/tmp" # Store the model in /tmp
|
37 |
+
)
|
38 |
+
|
39 |
+
llm = Llama(
|
40 |
+
model_path=model_path,
|
41 |
+
n_ctx=2048,
|
42 |
+
)
|
43 |
+
print("Llama model loaded successfully.")
|
44 |
+
except Exception as e:
|
45 |
+
print(f"Error loading Llama model: {e}")
|
46 |
|
47 |
+
# Initialisation de ChromaDB Vector Store
|
48 |
class VectorStore:
|
49 |
def __init__(self, collection_name):
|
50 |
self.embedding_model = SentenceTransformer('sentence-transformers/multi-qa-MiniLM-L6-cos-v1')
|
51 |
+
self.chroma_client = chromadb.Client()
|
52 |
+
|
53 |
+
if collection_name in self.chroma_client.list_collections():
|
54 |
+
self.chroma_client.delete_collection(collection_name)
|
|
|
|
|
|
|
55 |
self.collection = self.chroma_client.create_collection(name=collection_name)
|
56 |
|
57 |
+
def populate_vectors(self, df):
|
58 |
+
titles = df['name'].tolist()
|
59 |
+
ingredients = df['ingredients'].tolist()
|
60 |
+
diets = df['diet'].tolist()
|
61 |
+
prep_times = df['prep_time'].tolist()
|
62 |
+
|
63 |
+
# Load nutritional information, handling potentially missing columns and types
|
64 |
+
calories = df['calories'].astype(str).tolist() if 'calories' in df else ['None'] * len(df)
|
65 |
+
sugar = df['sugar'].astype(str).tolist() if 'sugar' in df else ['None'] * len(df)
|
66 |
+
gluten = df['gluten'].astype(str).tolist() if 'gluten' in df else ['None'] * len(df)
|
67 |
+
|
68 |
+
titles = titles[:2000]
|
69 |
+
ingredients = ingredients[:2000]
|
70 |
+
diets = diets[:2000]
|
71 |
+
prep_times = prep_times[:2000]
|
72 |
+
calories = calories[:2000]
|
73 |
+
sugar = sugar[:2000]
|
74 |
+
gluten = gluten[:2000]
|
75 |
|
76 |
texts = [
|
77 |
+
f"Recipe: {title}. Ingredients: {ingredient}. Diet: {diet}. Prep Time: {prep_time} minutes. Calories: {calorie}. Sugar: {sugar}. Gluten: {gluten}."
|
78 |
+
for title, ingredient, diet, prep_time, calorie, sugar, gluten in zip(titles, ingredients, diets, prep_times, calories, sugar, gluten)
|
|
|
|
|
|
|
79 |
]
|
80 |
|
81 |
for i, item in enumerate(texts):
|
|
|
85 |
def search_context(self, query, n_results=1):
|
86 |
query_embedding = self.embedding_model.encode([query]).tolist()
|
87 |
results = self.collection.query(query_embeddings=query_embedding, n_results=n_results)
|
88 |
+
return results['documents']
|
89 |
+
|
90 |
+
# Initialisation du store de vecteurs et peuplement
|
91 |
+
vector_store = None # Initialize to None
|
92 |
+
try:
|
93 |
+
vector_store = VectorStore("indian_food_embedding")
|
94 |
+
vector_store.populate_vectors(df)
|
95 |
+
print("Vector store initialized and populated.")
|
96 |
+
except Exception as e:
|
97 |
+
print(f"Error initializing or populating vector store: {e}")
|
98 |
+
|
99 |
+
|
100 |
+
# Replace the translate_text function with this new version
|
101 |
+
def translate_text(text, target_language='en'):
|
102 |
+
"""Translates the given text to the target language."""
|
103 |
+
try:
|
104 |
+
if target_language == 'en':
|
105 |
+
translator = GoogleTranslator(source='auto', target='en')
|
106 |
+
else:
|
107 |
+
translator = GoogleTranslator(source='en', target=target_language)
|
108 |
+
|
109 |
+
translated_text = translator.translate(text)
|
110 |
+
return translated_text
|
111 |
+
except Exception as e:
|
112 |
+
print(f"Translation error: {e}")
|
113 |
+
print(f"Detailed error: {type(e).__name__}, {e}") # Print more details for debugging.
|
114 |
+
return text # Return original text if translation fails
|
115 |
+
|
116 |
+
def generate_text(message, max_tokens=600, temperature=0.3, top_p=0.95,
|
117 |
+
gluten_free=False, dairy_free=False, allergies="", input_language='en'): # Added input_language
|
118 |
+
|
119 |
+
if llm is None:
|
120 |
+
return "Error: Llama model could not be loaded. Please check the console for errors."
|
121 |
+
|
122 |
+
if vector_store is None:
|
123 |
+
return "Error: Vector store could not be initialized. Please check the console for errors."
|
124 |
+
|
125 |
+
# Translate the input message to English
|
126 |
+
message_en = message
|
127 |
+
if input_language != 'en':
|
128 |
+
try:
|
129 |
+
message_en = translate_text(message, target_language='en')
|
130 |
+
except Exception as e:
|
131 |
+
print(f"Error translating input message: {e}")
|
132 |
+
return "Error translating input. Please try again in English."
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
+
context = ""
|
137 |
+
query = message_en
|
138 |
+
if gluten_free:
|
139 |
+
query += " gluten-free"
|
140 |
+
if dairy_free:
|
141 |
+
query += " dairy-free"
|
142 |
+
if allergies:
|
143 |
+
query += f" avoid ingredients: {allergies}"
|
144 |
+
|
145 |
+
try:
|
146 |
+
context_results = vector_store.search_context(query, n_results=1)
|
147 |
+
if context_results and isinstance(context_results, list):
|
148 |
+
context = context_results[0] if context_results else ""
|
149 |
+
else:
|
150 |
+
context = "" # or handle the error appropriately
|
151 |
+
print("Warning: No context found or invalid context format.")
|
152 |
+
except Exception as e:
|
153 |
+
return f"Error searching vector store: {e}"
|
154 |
|
155 |
prompt_template = (
|
156 |
+
f"SYSTEM: You are a helpful recipe generating bot specializing in Indian cuisine, assisting with dietary restrictions.\n"
|
157 |
+
f"SYSTEM: Here is some context:\n{context}\n"
|
158 |
+
f"USER: {message_en}\n" # Use the English translated message
|
159 |
f"ASSISTANT:\n"
|
160 |
)
|
161 |
|
162 |
+
try:
|
163 |
+
output = llm(
|
164 |
+
prompt_template,
|
165 |
+
temperature=temperature,
|
166 |
+
top_p=top_p,
|
167 |
+
top_k=40,
|
168 |
+
repeat_penalty=1.1,
|
169 |
+
max_tokens=max_tokens,
|
170 |
+
)
|
171 |
+
|
172 |
+
input_string = output['choices'][0]['text'].strip()
|
173 |
+
cleaned_text = input_string.strip("[]'").replace('\\n', '\n')
|
174 |
+
continuous_text = '\n'.join(cleaned_text.split('\n'))
|
175 |
+
|
176 |
+
# Translate the output back to the input language
|
177 |
+
output_text = continuous_text
|
178 |
+
if input_language != 'en':
|
179 |
+
try:
|
180 |
+
output_text = translate_text(continuous_text, target_language=input_language)
|
181 |
+
except Exception as e:
|
182 |
+
print(f"Error translating output message: {e}")
|
183 |
+
output_text = "Error translating output. Here is the English version:\n\n" + continuous_text
|
184 |
+
|
185 |
+
|
186 |
+
# Gluten Check on Output
|
187 |
+
if context and isinstance(context, str):
|
188 |
+
context_lower = context.lower()
|
189 |
+
if "gluten: yes" in context_lower:
|
190 |
+
output_text += "\n\nWarning: This recipe contains gluten."
|
191 |
+
elif "gluten: no" in context_lower:
|
192 |
+
output_text += "\n\nGood news! This recipe is gluten-free."
|
193 |
+
|
194 |
+
return output_text
|
195 |
+
|
196 |
+
except Exception as e:
|
197 |
+
return f"Error generating text: {e}"
|
198 |
+
|
199 |
+
demo = gr.Interface(
|
200 |
+
fn=generate_text,
|
201 |
+
inputs=[
|
202 |
+
gr.Textbox(lines=2, placeholder="Enter your message here...", label="Message"),
|
203 |
+
gr.Slider(minimum=50, maximum=1000, value=600, step=50, label="Max Tokens"),
|
204 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.3, step=0.1, label="Temperature"),
|
205 |
+
gr.Slider(minimum=0.7, maximum=1.0, value=0.95, step=0.05, label="Top P"),
|
206 |
+
gr.Checkbox(label="Gluten-Free"),
|
207 |
+
gr.Checkbox(label="Dairy-Free"),
|
208 |
+
gr.Textbox(lines=1, placeholder="e.g., peanuts, shellfish", label="Allergies (comma-separated)"),
|
209 |
+
gr.Dropdown(choices=['en', 'hi'], value='en', label="Input Language (en=English, hi=Hindi/Hinglish)"), # Added language selection
|
210 |
+
],
|
211 |
+
outputs=gr.Textbox(label="Generated Text"),
|
212 |
+
title="Indian Recipe Bot",
|
213 |
+
description="Running LLM with context retrieval from ChromaDB. Supports dietary restrictions, allergies, and Hinglish input/output!",
|
214 |
+
examples=[
|
215 |
+
["mujhe chawal aur dal hai, main kya bana sakta hoon jo gluten-free ho?", 600, 0.3, 0.95, True, False, "", 'hi'],
|
216 |
+
["Suggest a vegetarian dish with spinach and no nuts.", 600, 0.3, 0.95, False, False, "nuts", 'en'],
|
217 |
+
],
|
218 |
+
cache_examples=False,
|
219 |
+
)
|
220 |
|
221 |
+
if __name__ == "__main__":
|
222 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|