import streamlit as st | |
import requests | |
# # Print out all secrets to check what is available | |
# st.write(st.secrets) | |
# # Access the secret with the key "CTP_DATASCIENCE" (if that's how you've stored it) | |
CTP_DATASCIENCE = st.secrets.get("CTP_DATASCIENCE") | |
# # Check if the API key is available | |
# if CTP_DATASCIENCE: | |
# st.success("API key found!") | |
# else: | |
# st.error("API key not found!") | |
# Set up the headers for the Hugging Face API request using the API key | |
headers = {"Authorization": f"Bearer {CTP_DATASCIENCE}"} | |
# Define the Hugging Face API URL (for Whisper model, in this case) | |
API_URL = "https://api-inference.huggingface.co/models/openai/whisper-large-v3-turbo" | |
# Function to make the API request with the given file | |
def query(filename): | |
with open(filename, "rb") as f: | |
data = f.read() | |
response = requests.post(API_URL, headers=headers, data=data) | |
return response.json() | |
# Example usage with a sample audio file | |
output = query("sample1.flac") | |
# Display the output of the API request | |
st.write(output) | |