File size: 1,042 Bytes
0cf9dfe afc4964 0cf9dfe 78ae545 0cf9dfe 78ae545 1957db6 0cf9dfe 78ae545 e06d02f afc4964 e06d02f afc4964 e06d02f afc4964 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import streamlit as st
import requests
# # Print out all secrets to check what is available
# st.write(st.secrets)
# # Access the secret with the key "CTP_DATASCIENCE" (if that's how you've stored it)
CTP_DATASCIENCE = st.secrets.get("CTP_DATASCIENCE")
# # Check if the API key is available
# if CTP_DATASCIENCE:
# st.success("API key found!")
# else:
# st.error("API key not found!")
# Set up the headers for the Hugging Face API request using the API key
headers = {"Authorization": f"Bearer {CTP_DATASCIENCE}"}
# Define the Hugging Face API URL (for Whisper model, in this case)
API_URL = "https://api-inference.huggingface.co/models/openai/whisper-large-v3-turbo"
# Function to make the API request with the given file
def query(filename):
with open(filename, "rb") as f:
data = f.read()
response = requests.post(API_URL, headers=headers, data=data)
return response.json()
# Example usage with a sample audio file
output = query("sample1.flac")
# Display the output of the API request
st.write(output)
|