AhmedTaha012 commited on
Commit
ab1095f
1 Parent(s): b54a28b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -15
app.py CHANGED
@@ -10,6 +10,8 @@ from spacy import displacy
10
  from word2number import w2n
11
  from sentence_transformers import SentenceTransformer
12
  from sklearn.metrics.pairwise import cosine_similarity
 
 
13
  nltk.download('punkt')
14
  nltk.download('stopwords')
15
 
@@ -231,10 +233,18 @@ def getQuarterPrediction(text):
231
  logits = modelQuarter(**tokens).logits
232
  predicted_class_id = logits.argmax().item()
233
  return modelQuarter.config.id2label[predicted_class_id]
 
 
 
 
 
 
234
 
235
 
236
  st.header("Transcript Analysis", divider='rainbow')
237
  mainTranscript = st.text_area("Enter the transcript:", height=100)
 
 
238
  quarter = st.text_input('Enter your quarter', '')
239
  year = st.text_input('Enter your year', '')
240
  if st.button("Analyze"):
@@ -280,26 +290,17 @@ if st.button("Analyze"):
280
  profits=[x["profit"] for x in ner_result if "profit" in x]
281
  revenues=[x["revenue"] for x in ner_result if "revenue" in x]
282
  expences=[x["expense"] for x in ner_result if "expense" in x]
283
- for idx in range(len(revenues)):
284
  st.text_input(f'Revenue:{idx+1}', revenues[idx])
 
285
  for idx in range(len(profits)):
286
  st.text_input(f'Profit:{idx+1}', profits[idx])
 
287
  for idx in range(len(expences)):
288
  st.text_input(f'Expences:{idx+1}', expences[idx])
289
- # st.subheader("Parts from transcript that contais financial metrics", divider='rainbow')
290
- # for idx in savedchunks:
291
- # doc = nlp(chunks[idx])
292
- # entity_list=nlpPipe(chunks[idx])
293
- # entities = []
294
- # for entity in entity_list:
295
- # span = doc.char_span(entity['start'], entity['end'], label=entity['entity_group'])
296
- # entities.append(span)
297
- # try:
298
- # doc.ents = entities
299
- # ent_html = displacy.render(doc, style="ent", jupyter=False)
300
- # st.markdown(ent_html, unsafe_allow_html=True)
301
- # except:
302
- # pass
303
  st.subheader("Investment Recommendation", divider='rainbow')
304
  profitAmount=sum([convert_amount_to_number(x) for x in profits])
305
  expencesAmount=sum([convert_amount_to_number(x) for x in expences])
 
10
  from word2number import w2n
11
  from sentence_transformers import SentenceTransformer
12
  from sklearn.metrics.pairwise import cosine_similarity
13
+ import en_core_web_sm
14
+ nlp = en_core_web_sm.load()
15
  nltk.download('punkt')
16
  nltk.download('stopwords')
17
 
 
233
  logits = modelQuarter(**tokens).logits
234
  predicted_class_id = logits.argmax().item()
235
  return modelQuarter.config.id2label[predicted_class_id]
236
+ def getSentence(listOfSentences,value):
237
+ for sent in listOfSentences:
238
+ if value in sent:
239
+ return sent
240
+ return value
241
+
242
 
243
 
244
  st.header("Transcript Analysis", divider='rainbow')
245
  mainTranscript = st.text_area("Enter the transcript:", height=100)
246
+ doc = nlp(mainTranscript)
247
+ sentences = [sent.text for sent in doc.sents]
248
  quarter = st.text_input('Enter your quarter', '')
249
  year = st.text_input('Enter your year', '')
250
  if st.button("Analyze"):
 
290
  profits=[x["profit"] for x in ner_result if "profit" in x]
291
  revenues=[x["revenue"] for x in ner_result if "revenue" in x]
292
  expences=[x["expense"] for x in ner_result if "expense" in x]
293
+ for idx in range(len(revenues)):
294
  st.text_input(f'Revenue:{idx+1}', revenues[idx])
295
+ st.text_input(f'Sentences', getSentence(sentences,revenues[idx]))
296
  for idx in range(len(profits)):
297
  st.text_input(f'Profit:{idx+1}', profits[idx])
298
+ st.text_input(f'Sentences', getSentence(sentences,profits[idx]))
299
  for idx in range(len(expences)):
300
  st.text_input(f'Expences:{idx+1}', expences[idx])
301
+ st.text_input(f'Sentences', getSentence(sentences,expences[idx]))
302
+
303
+
 
 
 
 
 
 
 
 
 
 
 
304
  st.subheader("Investment Recommendation", divider='rainbow')
305
  profitAmount=sum([convert_amount_to_number(x) for x in profits])
306
  expencesAmount=sum([convert_amount_to_number(x) for x in expences])