Spaces:
Build error
Build error
Commit
·
b54a28b
1
Parent(s):
e898e49
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
-
from transformers import AutoTokenizer,AutoModelForTokenClassification,AutoModelForSequenceClassification
|
4 |
import math
|
5 |
import nltk
|
6 |
import torch
|
@@ -15,7 +15,8 @@ nltk.download('stopwords')
|
|
15 |
|
16 |
similarityModel = SentenceTransformer('BAAI/bge-small-en')
|
17 |
sentiment_model = pipeline("text-classification", model="AhmedTaha012/managersFeedback-V1.0.7")
|
18 |
-
|
|
|
19 |
tokenizerTopic = AutoTokenizer.from_pretrained("nickmuchi/finbert-tone-finetuned-finance-topic-classification",use_fast=True,token="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")
|
20 |
modelTopic = AutoModelForSequenceClassification.from_pretrained("nickmuchi/finbert-tone-finetuned-finance-topic-classification",token="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")
|
21 |
# torch.compile(modelTopic)
|
@@ -224,6 +225,13 @@ def selectedCorpusForNextQuarterModel(x,quarter,year):
|
|
224 |
sents=[des]+courpus
|
225 |
rest=[sents[f] for f in [list(cosine_similarity(embeddings_1)[0][1:]).index(value)+1 for value in sorted(list(cosine_similarity(embeddings_1)[0][1:]),reverse=True)][:3]]
|
226 |
return ",".join(rest)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
|
228 |
st.header("Transcript Analysis", divider='rainbow')
|
229 |
mainTranscript = st.text_area("Enter the transcript:", height=100)
|
@@ -246,8 +254,7 @@ if st.button("Analyze"):
|
|
246 |
st.markdown(f'<span style="color:{sentiment_color}">{sentiment}</span>', unsafe_allow_html=True)
|
247 |
st.subheader("Next Quarter Perdiction", divider='rainbow')
|
248 |
# increase_decrease = [increase_decrease_model(x)[0]['label'] for x in chunks]
|
249 |
-
increase_decrease=
|
250 |
-
increase_decrease=max(increase_decrease,key=increase_decrease.count)
|
251 |
increase_decrease_color = "green" if increase_decrease == "Increase" else "red"
|
252 |
st.markdown(f'<span style="color:{increase_decrease_color}">{increase_decrease}</span>', unsafe_allow_html=True)
|
253 |
st.subheader("Financial Metrics", divider='rainbow')
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
+
from transformers import AutoTokenizer,AutoModelForTokenClassification,AutoModelForSequenceClassification,BertForSequenceClassification
|
4 |
import math
|
5 |
import nltk
|
6 |
import torch
|
|
|
15 |
|
16 |
similarityModel = SentenceTransformer('BAAI/bge-small-en')
|
17 |
sentiment_model = pipeline("text-classification", model="AhmedTaha012/managersFeedback-V1.0.7")
|
18 |
+
tokenizerQuarter = AutoTokenizer.from_pretrained('AhmedTaha012/nextQuarter-status-V1.1.9')
|
19 |
+
modelQuarter = BertForSequenceClassification.from_pretrained('AhmedTaha012/nextQuarter-status-V1.1.9')
|
20 |
tokenizerTopic = AutoTokenizer.from_pretrained("nickmuchi/finbert-tone-finetuned-finance-topic-classification",use_fast=True,token="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")
|
21 |
modelTopic = AutoModelForSequenceClassification.from_pretrained("nickmuchi/finbert-tone-finetuned-finance-topic-classification",token="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")
|
22 |
# torch.compile(modelTopic)
|
|
|
225 |
sents=[des]+courpus
|
226 |
rest=[sents[f] for f in [list(cosine_similarity(embeddings_1)[0][1:]).index(value)+1 for value in sorted(list(cosine_similarity(embeddings_1)[0][1:]),reverse=True)][:3]]
|
227 |
return ",".join(rest)
|
228 |
+
def getQuarterPrediction(text):
|
229 |
+
tokens=tokenizerQuarter(text,padding=True,max_length=512,return_overflowing_tokens=False,add_special_tokens=True,truncation=True,return_tensors="pt")
|
230 |
+
with torch.no_grad():
|
231 |
+
logits = modelQuarter(**tokens).logits
|
232 |
+
predicted_class_id = logits.argmax().item()
|
233 |
+
return modelQuarter.config.id2label[predicted_class_id]
|
234 |
+
|
235 |
|
236 |
st.header("Transcript Analysis", divider='rainbow')
|
237 |
mainTranscript = st.text_area("Enter the transcript:", height=100)
|
|
|
254 |
st.markdown(f'<span style="color:{sentiment_color}">{sentiment}</span>', unsafe_allow_html=True)
|
255 |
st.subheader("Next Quarter Perdiction", divider='rainbow')
|
256 |
# increase_decrease = [increase_decrease_model(x)[0]['label'] for x in chunks]
|
257 |
+
increase_decrease=getQuarterPrediction(selectedCorpusForNextQuarterModel(mainTranscript,quarter,year))
|
|
|
258 |
increase_decrease_color = "green" if increase_decrease == "Increase" else "red"
|
259 |
st.markdown(f'<span style="color:{increase_decrease_color}">{increase_decrease}</span>', unsafe_allow_html=True)
|
260 |
st.subheader("Financial Metrics", divider='rainbow')
|