Spaces:
Build error
Build error
File size: 11,597 Bytes
a2acdb6 3be33d4 e89f604 54b6823 3be33d4 54b6823 3be33d4 54b6823 3be33d4 a2acdb6 3be33d4 174db76 3be33d4 174db76 3be33d4 a2acdb6 d4ca13d 281267d 3be33d4 e89f604 3be33d4 8d05dea 3be33d4 e89f604 3be33d4 8d05dea 3be33d4 a2acdb6 e89f604 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import streamlit as st
from transformers import pipeline
from transformers import AutoTokenizer,AutoModelForTokenClassification
import math
import nltk
import torch
from nltk.corpus import stopwords
from streamlit_extras.colored_header import colored_header
import spacy
from spacy import displacy
from word2number import w2n
nltk.download('punkt')
nltk.download('stopwords')
nlp = spacy.load('en_core_web_md')
sentiment_model = pipeline("text-classification", model="AhmedTaha012/managersFeedback-V1.0.7")
increase_decrease_model = pipeline("text-classification", model="AhmedTaha012/nextQuarter-status-V1.1.9")
tokenizer = AutoTokenizer.from_pretrained("AhmedTaha012/finance-ner-v0.0.9-finetuned-ner")
model = AutoModelForTokenClassification.from_pretrained("AhmedTaha012/finance-ner-v0.0.9-finetuned-ner")
# torch.compile(model)
nlpPipe = pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True)
def getSpeakers(data):
if "Speakers" in data:
return "\n".join([x for x in data.split("Speakers")[-1].split("\n") if "--" in x])
elif "Call participants" in data:
return "\n".join([x for x in data.split("Call participants")[-1].split("\n") if "--" in x])
elif "Call Participants" in data:
return "\n".join([x for x in data.split("Call Participants")[-1].split("\n") if "--" in x])
def removeSpeakers(data):
if "Speakers" in data:
return data.split("Speakers")[0]
elif "Call participants" in data:
return data.split("Call participants")[0]
elif "Call Participants" in data:
return data.split("Call Participants")[0]
def getQA(data):
if "Questions and Answers" in data:
return data.split("Questions and Answers")[-1]
elif "Questions & Answers" in data:
return data.split("Questions & Answers")[-1]
elif "Q&A" in data:
return data.split("Q&A")[-1]
else:
return ""
def removeQA(data):
if "Questions and Answers" in data:
return data.split("Questions and Answers")[0]
elif "Questions & Answers" in data:
return data.split("Questions & Answers")[0]
elif "Q&A" in data:
return data.split("Q&A")[0]
else:
return ""
def clean_and_preprocess(text):
text=[x for x in text.split("\n") if len(x)>100]
l=[]
for t in text:
# Convert to lowercase
t = t.lower()
# Tokenize text into words
words = nltk.word_tokenize(t)
# Remove stopwords
stop_words = set(stopwords.words('english'))
filtered_words = [word for word in words if word not in stop_words]
# Join the words back into a cleaned text
cleaned_text = ' '.join(filtered_words)
l.append(cleaned_text)
return "\n".join(l)
def replace_abbreviations(text):
replacements = {
'Q1': 'first quarter',
'Q2': 'second quarter',
'Q3': 'third quarter',
'Q4': 'fourth quarter',
'q1': 'first quarter',
'q2': 'second quarter',
'q3': 'third quarter',
'q4': 'fourth quarter',
'FY': 'fiscal year',
'YoY': 'year over year',
'MoM': 'month over month',
'EBITDA': 'earnings before interest, taxes, depreciation, and amortization',
'ROI': 'return on investment',
'EPS': 'earnings per share',
'P/E': 'price-to-earnings',
'DCF': 'discounted cash flow',
'CAGR': 'compound annual growth rate',
'GDP': 'gross domestic product',
'CFO': 'chief financial officer',
'GAAP': 'generally accepted accounting principles',
'SEC': 'U.S. Securities and Exchange Commission',
'IPO': 'initial public offering',
'M&A': 'mergers and acquisitions',
'EBIT': 'earnings before interest and taxes',
'IRR': 'internal rate of return',
'ROA': 'return on assets',
'ROE': 'return on equity',
'NAV': 'net asset value',
'PE ratio': 'price-to-earnings ratio',
'EPS growth': 'earnings per share growth',
'Fiscal Year': 'financial year',
'CAPEX': 'capital expenditure',
'APR': 'annual percentage rate',
'P&L': 'profit and loss',
'NPM': 'net profit margin',
'EBT': 'earnings before taxes',
'EBITDAR': 'earnings before interest, taxes, depreciation, amortization, and rent',
'PAT': 'profit after tax',
'COGS': 'cost of goods sold',
'EBTIDA': 'earnings before taxes, interest, depreciation, and amortization',
'E&Y': 'Ernst & Young',
'B2B': 'business to business',
'B2C': 'business to consumer',
'LIFO': 'last in, first out',
'FIFO': 'first in, first out',
'FCF': 'free cash flow',
'LTM': 'last twelve months',
'OPEX': 'operating expenses',
'TSR': 'total shareholder return',
'PP&E': 'property, plant, and equipment',
'PBT': 'profit before tax',
'EBITDAR margin': 'earnings before interest, taxes, depreciation, amortization, and rent margin',
'ROIC': 'return on invested capital',
'EPS': 'earnings per share',
'P/E': 'price-to-earnings',
'EBITDA': 'earnings before interest, taxes, depreciation, and amortization',
'YOY': 'year-over-year',
'MOM': 'month-over-month',
'CAGR': 'compound annual growth rate',
'GDP': 'gross domestic product',
'ROI': 'return on investment',
'ROE': 'return on equity',
'EBIT': 'earnings before interest and taxes',
'DCF': 'discounted cash flow',
'GAAP': 'Generally Accepted Accounting Principles',
'LTM': 'last twelve months',
'EBIT margin': 'earnings before interest and taxes margin',
'EBT': 'earnings before taxes',
'EBTA': 'earnings before taxes and amortization',
'FTE': 'full-time equivalent',
'EBIDTA': 'earnings before interest, depreciation, taxes, and amortization',
'EBTIDA': 'earnings before taxes, interest, depreciation, and amortization',
'EBITDAR': 'earnings before interest, taxes, depreciation, amortization, and rent',
'COGS': 'cost of goods sold',
'APR': 'annual percentage rate',
'PESTEL': 'Political, Economic, Social, Technological, Environmental, and Legal',
'KPI': 'key performance indicator',
'SWOT': 'Strengths, Weaknesses, Opportunities, Threats',
'CAPEX': 'capital expenditures',
'EBITDARM': 'earnings before interest, taxes, depreciation, amortization, rent, and management fees',
'EBITDAX': 'earnings before interest, taxes, depreciation, amortization, and exploration expenses',
'EBITDAS': 'earnings before interest, taxes, depreciation, amortization, and restructuring costs',
'EBITDAX-C': 'earnings before interest, taxes, depreciation, amortization, exploration expenses, and commodity derivatives',
'EBITDAX-R': 'earnings before interest, taxes, depreciation, amortization, exploration expenses, and asset retirement obligations',
'EBITDAX-E': 'earnings before interest, taxes, depreciation, amortization, exploration expenses, and environmental liabilities'
# Add more abbreviations and replacements as needed
}
for abbreviation, full_form in replacements.items():
text = text.replace(abbreviation, full_form)
return text
def clean_and_preprocess(text):
text=[x for x in text.split("\n") if len(x)>100]
l=[]
for t in text:
# Convert to lowercase
t = t.lower()
# Tokenize text into words
words = nltk.word_tokenize(t)
# Remove stopwords
stop_words = set(stopwords.words('english'))
filtered_words = [word for word in words if word not in stop_words]
# Join the words back into a cleaned text
cleaned_text = ' '.join(filtered_words)
l.append(cleaned_text)
return "\n".join(l)
def convert_amount_to_number(amount_str):
try:
return w2n.word_to_num(amount_str)
except ValueError:
return 0 # Return 0 if the conversion fails
st.header("Transcript Analysis", divider='rainbow')
transcript = st.text_area("Enter the transcript:", height=100)
if st.button("Analyze"):
transcript=replace_abbreviations(transcript)
transcript=replace_abbreviations(transcript)
transcript=removeSpeakers(transcript)
transcript=removeQA(transcript)
transcript=clean_and_preprocess(transcript)
tokens=transcript.split()
splitSize=256
chunks=[tokens[r*splitSize:(r+1)*splitSize] for r in range(math.ceil(len(tokens)/splitSize))]
chunks=[" ".join(chuk) for chuk in chunks]
st.subheader("Management Sentiment", divider='rainbow')
sentiment = [sentiment_model(x)[0]['label'] for x in chunks]
sentiment=max(sentiment,key=sentiment.count)
sentiment_color = "green" if sentiment == "postive" else "red"
st.markdown(f'<span style="color:{sentiment_color}">{sentiment}</span>', unsafe_allow_html=True)
st.subheader("Next Quarter Perdiction", divider='rainbow')
increase_decrease = [increase_decrease_model(x)[0]['label'] for x in chunks]
increase_decrease=max(increase_decrease,key=increase_decrease.count)
increase_decrease_color = "green" if increase_decrease == "Increase" else "red"
st.markdown(f'<span style="color:{increase_decrease_color}">{increase_decrease}</span>', unsafe_allow_html=True)
st.subheader("Financial Metrics", divider='rainbow')
ner_result=[]
savedchunks=[]
idx=0
while idx<len(chunks):
ents=nlpPipe(chunks[idx])
if len(ents)>=1:
idxx=0
savedchunks.append(idx)
while idxx<len(ents):
if len(ents[idxx]["word"].split())==2:
ner_result.append({ents[idxx]["entity_group"]:ents[idxx]["word"]})
else:
ner_result.append({ents[idxx]["entity_group"]:ents[idxx]["word"]+ents[idxx+1]["word"]+ents[idxx+2]["word"]})
idxx=idxx+2
idxx=idxx+1
idx=idx+1
profits=[x["profit"] for x in ner_result if "profit" in x]
revenues=[x["revenue"] for x in ner_result if "revenue" in x]
expences=[x["expense"] for x in ner_result if "expense" in x]
for idx in range(len(revenues)):
st.text_input(f'Revenue:{idx+1}', revenues[idx])
for idx in range(len(profits)):
st.text_input(f'Profit:{idx+1}', profits[idx])
for idx in range(len(expences)):
st.text_input(f'Expences:{idx+1}', expences[idx])
st.subheader("Parts from transcript that contais financial metrics", divider='rainbow')
for idx in savedchunks:
doc = nlp(chunks[idx])
entity_list=nlpPipe(chunks[idx])
entities = []
for entity in entity_list:
span = doc.char_span(entity['start'], entity['end'], label=entity['entity_group'])
entities.append(span)
try:
doc.ents = entities
ent_html = displacy.render(doc, style="ent", jupyter=False)
st.markdown(ent_html, unsafe_allow_html=True)
except:
pass
st.subheader("Investment Recommendation", divider='rainbow')
profitAmount=sum([convert_amount_to_number(x) for x in profits])
expencesAmount=sum([convert_amount_to_number(x) for x in expences])
if increase_decrease=="Increase" and sentiment=="postive" and profitAmount>expencesAmount:
st.markdown(f'<span style="color:green">{"This is a great chance for investment. Do consider it."}</span>', unsafe_allow_html=True)
else:
st.markdown(f'<span style="color:red">{"Not the best chance for investment."}</span>', unsafe_allow_html=True)
|