Spaces:
Build error
Build error
Commit
·
e89f604
1
Parent(s):
8d05dea
Update app.py
Browse files
app.py
CHANGED
@@ -1,36 +1,30 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
|
|
3 |
sentiment_model = pipeline("text-classification", model="AhmedTaha012/managersFeedback-V1.0.7")
|
4 |
increase_decrease_model = pipeline("text-classification", model="AhmedTaha012/nextQuarter-status-V1.1.9")
|
5 |
-
ner_model = pipeline("token-classification", model="AhmedTaha012/finance-ner-v0.0.
|
6 |
|
7 |
st.title("Transcript Analysis")
|
8 |
transcript = st.text_area("Enter the transcript:", height=200)
|
|
|
|
|
|
|
9 |
|
10 |
if st.button("Analyze"):
|
11 |
st.subheader("Sentiment Analysis")
|
12 |
-
sentiment = sentiment_model(
|
|
|
13 |
sentiment_color = "green" if sentiment == "POSITIVE" else "red"
|
14 |
st.markdown(f'<span style="color:{sentiment_color}">{sentiment}</span>', unsafe_allow_html=True)
|
15 |
|
16 |
st.subheader("Increase/Decrease Prediction")
|
17 |
-
increase_decrease = increase_decrease_model(
|
|
|
18 |
increase_decrease_color = "green" if increase_decrease == "INCREASE" else "red"
|
19 |
st.markdown(f'<span style="color:{increase_decrease_color}">{increase_decrease}</span>', unsafe_allow_html=True)
|
20 |
|
21 |
st.subheader("NER Metrics")
|
22 |
-
ner_result = ner_model(
|
23 |
-
|
24 |
-
|
25 |
-
st.write(f"Revenue: {revenue}")
|
26 |
-
else:
|
27 |
-
st.write("Revenue not found.")
|
28 |
-
|
29 |
-
show_details = st.checkbox("Show Detailed Predictions")
|
30 |
-
if show_details:
|
31 |
-
st.subheader("Detailed Predictions")
|
32 |
-
st.json({
|
33 |
-
"Sentiment Analysis": sentiment,
|
34 |
-
"Increase/Decrease Prediction": increase_decrease,
|
35 |
-
"NER Metrics": ner_result
|
36 |
-
})
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
+
import math
|
4 |
sentiment_model = pipeline("text-classification", model="AhmedTaha012/managersFeedback-V1.0.7")
|
5 |
increase_decrease_model = pipeline("text-classification", model="AhmedTaha012/nextQuarter-status-V1.1.9")
|
6 |
+
ner_model = pipeline("token-classification", model="AhmedTaha012/finance-ner-v0.0.9-finetuned-ner")
|
7 |
|
8 |
st.title("Transcript Analysis")
|
9 |
transcript = st.text_area("Enter the transcript:", height=200)
|
10 |
+
tokens=transcript.split()
|
11 |
+
splitSize=256
|
12 |
+
chunks=[tokens[r*splitSize:(r+1)*splitSize] for r in range(math.ceil(len(tokens)/splitSize))]
|
13 |
|
14 |
if st.button("Analyze"):
|
15 |
st.subheader("Sentiment Analysis")
|
16 |
+
sentiment = [sentiment_model(x)[0]['label'] for x in chunks]
|
17 |
+
sentiment=max(sentiment,key=sentiment.count)
|
18 |
sentiment_color = "green" if sentiment == "POSITIVE" else "red"
|
19 |
st.markdown(f'<span style="color:{sentiment_color}">{sentiment}</span>', unsafe_allow_html=True)
|
20 |
|
21 |
st.subheader("Increase/Decrease Prediction")
|
22 |
+
increase_decrease = [increase_decrease_model(x)[0]['label'] for x in chunks]
|
23 |
+
increase_decrease=max(increase_decrease,key=increase_decrease.count)
|
24 |
increase_decrease_color = "green" if increase_decrease == "INCREASE" else "red"
|
25 |
st.markdown(f'<span style="color:{increase_decrease_color}">{increase_decrease}</span>', unsafe_allow_html=True)
|
26 |
|
27 |
st.subheader("NER Metrics")
|
28 |
+
ner_result = [ner_model(x) for x in chunks]
|
29 |
+
st.write(str(ner_result))
|
30 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|