File size: 8,585 Bytes
a2acdb6
 
e89f604
a2acdb6
 
e89f604
174db76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2acdb6
d4ca13d
 
174db76
 
 
 
 
e89f604
 
 
a2acdb6
d4ca13d
 
e89f604
 
8d05dea
 
a2acdb6
d4ca13d
e89f604
 
8d05dea
 
a2acdb6
d4ca13d
e89f604
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import streamlit as st
from transformers import pipeline
import math
sentiment_model = pipeline("text-classification", model="AhmedTaha012/managersFeedback-V1.0.7")
increase_decrease_model = pipeline("text-classification", model="AhmedTaha012/nextQuarter-status-V1.1.9")
ner_model = pipeline("token-classification", model="AhmedTaha012/finance-ner-v0.0.9-finetuned-ner")
def getSpeakers(data):
    if "Speakers" in data:
        return "\n".join([x for x in data.split("Speakers")[-1].split("\n") if "--" in x])
    elif "Call participants" in data:
        return "\n".join([x for x in data.split("Call participants")[-1].split("\n") if "--" in x])
    elif "Call Participants" in data:
        return "\n".join([x for x in data.split("Call Participants")[-1].split("\n") if "--" in x])
def removeSpeakers(data):
    if "Speakers" in data:
        return data.split("Speakers")[0]
    elif "Call participants" in data:
        return data.split("Call participants")[0]
    elif "Call Participants" in data:
        return data.split("Call Participants")[0]
def getQA(data):
    if "Questions and Answers" in data:    
        return data.split("Questions and Answers")[-1]
    elif  "Questions & Answers" in data:
        return data.split("Questions & Answers")[-1]
    elif "Q&A" in data:
        return data.split("Q&A")[-1]
    else:
        return ""
def removeQA(data):
    if "Questions and Answers" in data:    
        return data.split("Questions and Answers")[0]
    elif  "Questions & Answers" in data:
        return data.split("Questions & Answers")[0]
    elif "Q&A" in data:
        return data.split("Q&A")[0]
    else:
        return ""
def clean_and_preprocess(text):
    text=[x for x in text.split("\n") if len(x)>100]
    l=[]
    for t in text:
        # Convert to lowercase
        t = t.lower()    
        # Tokenize text into words
        words = nltk.word_tokenize(t)
        # Remove stopwords
        stop_words = set(stopwords.words('english'))
        filtered_words = [word for word in words if word not in stop_words]

        # Join the words back into a cleaned text
        cleaned_text = ' '.join(filtered_words)
        l.append(cleaned_text)
    return "\n".join(l)
def replace_abbreviations(text):
    
    replacements = {
        'Q1': 'first quarter',
        'Q2': 'second quarter',
        'Q3': 'third quarter',
        'Q4': 'fourth quarter',
        'q1': 'first quarter',
        'q2': 'second quarter',
        'q3': 'third quarter',
        'q4': 'fourth quarter',
        'FY': 'fiscal year',
        'YoY': 'year over year',
        'MoM': 'month over month',
        'EBITDA': 'earnings before interest, taxes, depreciation, and amortization',
        'ROI': 'return on investment',
        'EPS': 'earnings per share',
        'P/E': 'price-to-earnings',
        'DCF': 'discounted cash flow',
        'CAGR': 'compound annual growth rate',
        'GDP': 'gross domestic product',
        'CFO': 'chief financial officer',
        'GAAP': 'generally accepted accounting principles',
        'SEC': 'U.S. Securities and Exchange Commission',
        'IPO': 'initial public offering',
        'M&A': 'mergers and acquisitions',
        'EBIT': 'earnings before interest and taxes',
        'IRR': 'internal rate of return',
        'ROA': 'return on assets',
        'ROE': 'return on equity',
        'NAV': 'net asset value',
        'PE ratio': 'price-to-earnings ratio',
        'EPS growth': 'earnings per share growth',
        'Fiscal Year': 'financial year',
        'CAPEX': 'capital expenditure',
        'APR': 'annual percentage rate',
        'P&L': 'profit and loss',
        'NPM': 'net profit margin',
        'EBT': 'earnings before taxes',
        'EBITDAR': 'earnings before interest, taxes, depreciation, amortization, and rent',
        'PAT': 'profit after tax',
        'COGS': 'cost of goods sold',
        'EBTIDA': 'earnings before taxes, interest, depreciation, and amortization',
        'E&Y': 'Ernst & Young',
        'B2B': 'business to business',
        'B2C': 'business to consumer',
        'LIFO': 'last in, first out',
        'FIFO': 'first in, first out',
        'FCF': 'free cash flow',
        'LTM': 'last twelve months',
        'OPEX': 'operating expenses',
        'TSR': 'total shareholder return',
        'PP&E': 'property, plant, and equipment',
        'PBT': 'profit before tax',
        'EBITDAR margin': 'earnings before interest, taxes, depreciation, amortization, and rent margin',
        'ROIC': 'return on invested capital',
        'EPS': 'earnings per share',
    'P/E': 'price-to-earnings',
    'EBITDA': 'earnings before interest, taxes, depreciation, and amortization',
    'YOY': 'year-over-year',
    'MOM': 'month-over-month',
    'CAGR': 'compound annual growth rate',
    'GDP': 'gross domestic product',
    'ROI': 'return on investment',
    'ROE': 'return on equity',
    'EBIT': 'earnings before interest and taxes',
    'DCF': 'discounted cash flow',
    'GAAP': 'Generally Accepted Accounting Principles',
    'LTM': 'last twelve months',
    'EBIT margin': 'earnings before interest and taxes margin',
    'EBT': 'earnings before taxes',
    'EBTA': 'earnings before taxes and amortization',
    'FTE': 'full-time equivalent',
    'EBIDTA': 'earnings before interest, depreciation, taxes, and amortization',
    'EBTIDA': 'earnings before taxes, interest, depreciation, and amortization',
    'EBITDAR': 'earnings before interest, taxes, depreciation, amortization, and rent',
    'COGS': 'cost of goods sold',
    'APR': 'annual percentage rate',
    'PESTEL': 'Political, Economic, Social, Technological, Environmental, and Legal',
    'KPI': 'key performance indicator',
    'SWOT': 'Strengths, Weaknesses, Opportunities, Threats',
    'CAPEX': 'capital expenditures',
    'EBITDARM': 'earnings before interest, taxes, depreciation, amortization, rent, and management fees',
    'EBITDAX': 'earnings before interest, taxes, depreciation, amortization, and exploration expenses',
    'EBITDAS': 'earnings before interest, taxes, depreciation, amortization, and restructuring costs',
    'EBITDAX-C': 'earnings before interest, taxes, depreciation, amortization, exploration expenses, and commodity derivatives',
    'EBITDAX-R': 'earnings before interest, taxes, depreciation, amortization, exploration expenses, and asset retirement obligations',
    'EBITDAX-E': 'earnings before interest, taxes, depreciation, amortization, exploration expenses, and environmental liabilities'
        
        # Add more abbreviations and replacements as needed
    }
    for abbreviation, full_form in replacements.items():
        text = text.replace(abbreviation, full_form)
    
    return text

def clean_and_preprocess(text):
    text=[x for x in text.split("\n") if len(x)>100]
    l=[]
    for t in text:
        # Convert to lowercase
        t = t.lower()    
        # Tokenize text into words
        words = nltk.word_tokenize(t)
        # Remove stopwords
        stop_words = set(stopwords.words('english'))
        filtered_words = [word for word in words if word not in stop_words]

        # Join the words back into a cleaned text
        cleaned_text = ' '.join(filtered_words)
        l.append(cleaned_text)
    return "\n".join(l)







st.title("Transcript Analysis")
transcript = st.text_area("Enter the transcript:", height=200)
transcript=replace_abbreviations(transcript)
transcript=replace_abbreviations(transcript)
transcript=removeSpeakers(transcript)
transcript=removeQA(transcript)
transcript=clean_and_preprocess(transcript)
tokens=transcript.split()
splitSize=256
chunks=[tokens[r*splitSize:(r+1)*splitSize] for r in range(math.ceil(len(tokens)/splitSize))]

if st.button("Analyze"):
    st.subheader("Sentiment Analysis")
    sentiment = [sentiment_model(x)[0]['label'] for x in chunks]
    sentiment=max(sentiment,key=sentiment.count)
    sentiment_color = "green" if sentiment == "POSITIVE" else "red"
    st.markdown(f'<span style="color:{sentiment_color}">{sentiment}</span>', unsafe_allow_html=True)

    st.subheader("Increase/Decrease Prediction")
    increase_decrease = [increase_decrease_model(x)[0]['label'] for x in chunks]
    increase_decrease=max(increase_decrease,key=increase_decrease.count)
    increase_decrease_color = "green" if increase_decrease == "INCREASE" else "red"
    st.markdown(f'<span style="color:{increase_decrease_color}">{increase_decrease}</span>', unsafe_allow_html=True)

    st.subheader("NER Metrics")
    ner_result = [ner_model(x) for x in chunks]
    st.write(str(ner_result))