File size: 4,975 Bytes
66b04b1
dcf565a
66b04b1
 
 
 
dcf565a
 
 
 
 
 
 
 
66b04b1
dcf565a
 
 
 
 
 
 
 
66b04b1
dcf565a
 
 
 
 
 
 
 
 
 
66b04b1
 
 
dcf565a
66b04b1
dcf565a
 
66b04b1
 
 
dcf565a
66b04b1
dcf565a
66b04b1
dcf565a
 
 
 
 
 
 
 
 
66b04b1
 
 
 
 
 
 
 
dcf565a
66b04b1
 
dcf565a
66b04b1
 
 
 
dcf565a
66b04b1
dcf565a
 
 
 
 
66b04b1
dcf565a
66b04b1
 
 
 
 
 
 
dcf565a
 
 
66b04b1
 
 
dcf565a
66b04b1
 
 
 
 
dcf565a
66b04b1
 
 
 
 
 
 
dcf565a
66b04b1
dcf565a
66b04b1
dcf565a
66b04b1
 
 
 
dcf565a
 
66b04b1
dcf565a
66b04b1
 
 
 
dcf565a
 
66b04b1
dcf565a
66b04b1
dcf565a
66b04b1
 
 
 
 
dcf565a
66b04b1
dcf565a
66b04b1
 
 
 
 
dcf565a
66b04b1
dcf565a
 
 
 
 
66b04b1
dcf565a
 
 
 
66b04b1
 
dcf565a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import gradio as gr
import spaces
import numpy as np
import random
import torch

from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import (
    StableDiffusionXLPipeline,
)
from diffusers.schedulers.scheduling_euler_ancestral_discrete import (
    EulerAncestralDiscreteScheduler,
)

device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16

repo = "OnomaAIResearch/Illustrious-xl-early-release-v0"

vae = AutoencoderKL.from_pretrained(
        "madebyollin/sdxl-vae-fp16-fix",
        torch_dtype=torch.float16,
    )

pipe = StableDiffusionXLPipeline.from_pretrained(
    repo,
    vae=vae,
    torch_dtype=torch.float16,
    use_safetensors=True,
    add_watermarker=False,
    custom_pipeline="lpw_stable_diffusion_xl",
).to(device)

pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)


MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1344

@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
        
    generator = torch.Generator().manual_seed(seed)
    
    image = pipe(
        prompt = prompt, 
        negative_prompt = negative_prompt,
        guidance_scale = guidance_scale, 
        num_inference_steps = num_inference_steps, 
        width = width, 
        height = height,
        generator = generator
    ).images[0] 
    
    return image, seed

examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 580px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # Demo [Stable Diffusion 3 Medium](https://huggingface.co./stabilityai/stable-diffusion-3-medium)
        Learn more about the [Stable Diffusion 3 series](https://stability.ai/news/stable-diffusion-3). Try on [Stability AI API](https://platform.stability.ai/docs/api-reference#tag/Generate/paths/~1v2beta~1stable-image~1generate~1sd3/post), [Stable Assistant](https://stability.ai/stable-assistant), or on Discord via [Stable Artisan](https://stability.ai/stable-artisan). Run locally with [ComfyUI](https://github.com/comfyanonymous/ComfyUI) or [diffusers](https://github.com/huggingface/diffusers)
        """)
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
            )
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=64,
                    value=1024,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=64,
                    value=1024,
                )
            
            with gr.Row():
                
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=5.0,
                )
                
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=28,
                )
        
        gr.Examples(
            examples = examples,
            inputs = [prompt]
        )
    gr.on(
        triggers=[run_button.click, prompt.submit, negative_prompt.submit],
        fn = infer,
        inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs = [result, seed]
    )

demo.launch()