AguaL commited on
Commit
dcf565a
·
1 Parent(s): f9abb71

测试动漫模型

Browse files
Files changed (2) hide show
  1. app.py +78 -72
  2. requirements.txt +3 -5
app.py CHANGED
@@ -1,74 +1,85 @@
1
  import gradio as gr
 
2
  import numpy as np
3
  import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
  import torch
8
 
 
 
 
 
 
 
 
 
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "OnomaAIResearch/Illustrious-xl-early-release-v0" # Replace to the model you would like to use
 
 
 
 
 
 
 
11
 
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
 
 
 
 
 
 
16
 
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
 
20
  MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
 
 
 
23
 
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
  if randomize_seed:
37
  seed = random.randint(0, MAX_SEED)
38
-
39
  generator = torch.Generator().manual_seed(seed)
40
-
41
  image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
- ).images[0]
50
-
51
  return image, seed
52
 
53
-
54
  examples = [
55
  "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
  "An astronaut riding a green horse",
57
  "A delicious ceviche cheesecake slice",
58
  ]
59
 
60
- css = """
61
  #col-container {
62
  margin: 0 auto;
63
- max-width: 640px;
64
  }
65
  """
66
 
67
  with gr.Blocks(css=css) as demo:
 
68
  with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Illustrious xl early")
70
-
 
 
 
71
  with gr.Row():
 
72
  prompt = gr.Text(
73
  label="Prompt",
74
  show_label=False,
@@ -76,19 +87,19 @@ with gr.Blocks(css=css) as demo:
76
  placeholder="Enter your prompt",
77
  container=False,
78
  )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
  result = gr.Image(label="Result", show_label=False)
83
 
84
  with gr.Accordion("Advanced Settings", open=False):
 
85
  negative_prompt = gr.Text(
86
  label="Negative prompt",
87
  max_lines=1,
88
  placeholder="Enter a negative prompt",
89
- visible=False,
90
  )
91
-
92
  seed = gr.Slider(
93
  label="Seed",
94
  minimum=0,
@@ -96,59 +107,54 @@ with gr.Blocks(css=css) as demo:
96
  step=1,
97
  value=0,
98
  )
99
-
100
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
102
  with gr.Row():
 
103
  width = gr.Slider(
104
  label="Width",
105
  minimum=256,
106
  maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
  )
110
-
111
  height = gr.Slider(
112
  label="Height",
113
  minimum=256,
114
  maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
  )
118
-
119
  with gr.Row():
 
120
  guidance_scale = gr.Slider(
121
  label="Guidance scale",
122
  minimum=0.0,
123
  maximum=10.0,
124
  step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
  )
127
-
128
  num_inference_steps = gr.Slider(
129
  label="Number of inference steps",
130
  minimum=1,
131
  maximum=50,
132
  step=1,
133
- value=2, # Replace with defaults that work for your model
134
  )
135
-
136
- gr.Examples(examples=examples, inputs=[prompt])
 
 
 
137
  gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
- fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
- outputs=[result, seed],
151
  )
152
 
153
- if __name__ == "__main__":
154
- demo.launch()
 
1
  import gradio as gr
2
+ import spaces
3
  import numpy as np
4
  import random
 
 
 
5
  import torch
6
 
7
+ from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
8
+ from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import (
9
+ StableDiffusionXLPipeline,
10
+ )
11
+ from diffusers.schedulers.scheduling_euler_ancestral_discrete import (
12
+ EulerAncestralDiscreteScheduler,
13
+ )
14
+
15
  device = "cuda" if torch.cuda.is_available() else "cpu"
16
+ dtype = torch.float16
17
+
18
+ repo = "OnomaAIResearch/Illustrious-xl-early-release-v0"
19
+
20
+ vae = AutoencoderKL.from_pretrained(
21
+ "madebyollin/sdxl-vae-fp16-fix",
22
+ torch_dtype=torch.float16,
23
+ )
24
 
25
+ pipe = StableDiffusionXLPipeline.from_pretrained(
26
+ repo,
27
+ vae=vae,
28
+ torch_dtype=torch.float16,
29
+ use_safetensors=True,
30
+ add_watermarker=False,
31
+ custom_pipeline="lpw_stable_diffusion_xl",
32
+ ).to(device)
33
+
34
+ pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
35
 
 
 
36
 
37
  MAX_SEED = np.iinfo(np.int32).max
38
+ MAX_IMAGE_SIZE = 1344
39
 
40
+ @spaces.GPU
41
+ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
42
 
 
 
 
 
 
 
 
 
 
 
 
 
43
  if randomize_seed:
44
  seed = random.randint(0, MAX_SEED)
45
+
46
  generator = torch.Generator().manual_seed(seed)
47
+
48
  image = pipe(
49
+ prompt = prompt,
50
+ negative_prompt = negative_prompt,
51
+ guidance_scale = guidance_scale,
52
+ num_inference_steps = num_inference_steps,
53
+ width = width,
54
+ height = height,
55
+ generator = generator
56
+ ).images[0]
57
+
58
  return image, seed
59
 
 
60
  examples = [
61
  "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
62
  "An astronaut riding a green horse",
63
  "A delicious ceviche cheesecake slice",
64
  ]
65
 
66
+ css="""
67
  #col-container {
68
  margin: 0 auto;
69
+ max-width: 580px;
70
  }
71
  """
72
 
73
  with gr.Blocks(css=css) as demo:
74
+
75
  with gr.Column(elem_id="col-container"):
76
+ gr.Markdown(f"""
77
+ # Demo [Stable Diffusion 3 Medium](https://huggingface.co/stabilityai/stable-diffusion-3-medium)
78
+ Learn more about the [Stable Diffusion 3 series](https://stability.ai/news/stable-diffusion-3). Try on [Stability AI API](https://platform.stability.ai/docs/api-reference#tag/Generate/paths/~1v2beta~1stable-image~1generate~1sd3/post), [Stable Assistant](https://stability.ai/stable-assistant), or on Discord via [Stable Artisan](https://stability.ai/stable-artisan). Run locally with [ComfyUI](https://github.com/comfyanonymous/ComfyUI) or [diffusers](https://github.com/huggingface/diffusers)
79
+ """)
80
+
81
  with gr.Row():
82
+
83
  prompt = gr.Text(
84
  label="Prompt",
85
  show_label=False,
 
87
  placeholder="Enter your prompt",
88
  container=False,
89
  )
90
+
91
+ run_button = gr.Button("Run", scale=0)
92
+
93
  result = gr.Image(label="Result", show_label=False)
94
 
95
  with gr.Accordion("Advanced Settings", open=False):
96
+
97
  negative_prompt = gr.Text(
98
  label="Negative prompt",
99
  max_lines=1,
100
  placeholder="Enter a negative prompt",
 
101
  )
102
+
103
  seed = gr.Slider(
104
  label="Seed",
105
  minimum=0,
 
107
  step=1,
108
  value=0,
109
  )
110
+
111
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
112
+
113
  with gr.Row():
114
+
115
  width = gr.Slider(
116
  label="Width",
117
  minimum=256,
118
  maximum=MAX_IMAGE_SIZE,
119
+ step=64,
120
+ value=1024,
121
  )
122
+
123
  height = gr.Slider(
124
  label="Height",
125
  minimum=256,
126
  maximum=MAX_IMAGE_SIZE,
127
+ step=64,
128
+ value=1024,
129
  )
130
+
131
  with gr.Row():
132
+
133
  guidance_scale = gr.Slider(
134
  label="Guidance scale",
135
  minimum=0.0,
136
  maximum=10.0,
137
  step=0.1,
138
+ value=5.0,
139
  )
140
+
141
  num_inference_steps = gr.Slider(
142
  label="Number of inference steps",
143
  minimum=1,
144
  maximum=50,
145
  step=1,
146
+ value=28,
147
  )
148
+
149
+ gr.Examples(
150
+ examples = examples,
151
+ inputs = [prompt]
152
+ )
153
  gr.on(
154
+ triggers=[run_button.click, prompt.submit, negative_prompt.submit],
155
+ fn = infer,
156
+ inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
157
+ outputs = [result, seed]
 
 
 
 
 
 
 
 
 
158
  )
159
 
160
+ demo.launch()
 
requirements.txt CHANGED
@@ -1,6 +1,4 @@
1
- accelerate
2
- diffusers
3
- invisible_watermark
4
- torch
5
  transformers
6
- xformers
 
 
1
+ git+https://github.com/huggingface/diffusers.git
 
 
 
2
  transformers
3
+ accelerate
4
+ sentencepiece