AbeerTrial's picture
Upload folder using huggingface_hub
8a58cf3
"""Keyword-table based index.
Similar to a "hash table" in concept. LlamaIndex first tries
to extract keywords from the source text, and stores the
keywords as keys per item. It similarly extracts keywords
from the query text. Then, it tries to match those keywords to
existing keywords in the table.
"""
import logging
from typing import Any, Dict, List, Optional, Sequence, Tuple, Type
from gpt_index.data_structs.data_structs import KG
from gpt_index.indices.base import DOCUMENTS_INPUT, BaseGPTIndex
from gpt_index.indices.query.base import BaseGPTIndexQuery
from gpt_index.indices.query.knowledge_graph.query import GPTKGTableQuery, KGQueryMode
from gpt_index.indices.query.schema import QueryMode
from gpt_index.langchain_helpers.chain_wrapper import LLMPredictor
from gpt_index.langchain_helpers.text_splitter import TextSplitter
from gpt_index.prompts.default_prompts import (
DEFAULT_KG_TRIPLET_EXTRACT_PROMPT,
DEFAULT_QUERY_KEYWORD_EXTRACT_TEMPLATE,
)
from gpt_index.prompts.prompts import KnowledgeGraphPrompt
from gpt_index.schema import BaseDocument
from gpt_index.utils import get_new_id
DQKET = DEFAULT_QUERY_KEYWORD_EXTRACT_TEMPLATE
class GPTKnowledgeGraphIndex(BaseGPTIndex[KG]):
"""GPT Knowledge Graph Index.
Build a KG by extracting triplets, and leveraging the KG during query-time.
Args:
kg_triple_extract_template (KnowledgeGraphPrompt): The prompt to use for
extracting triplets.
max_triplets_per_chunk (int): The maximum number of triplets to extract.
"""
index_struct_cls = KG
def __init__(
self,
documents: Optional[Sequence[DOCUMENTS_INPUT]] = None,
index_struct: Optional[KG] = None,
kg_triple_extract_template: Optional[KnowledgeGraphPrompt] = None,
max_triplets_per_chunk: int = 10,
llm_predictor: Optional[LLMPredictor] = None,
text_splitter: Optional[TextSplitter] = None,
include_embeddings: bool = False,
**kwargs: Any,
) -> None:
"""Initialize params."""
# need to set parameters before building index in base class.
self.include_embeddings = include_embeddings
self.max_triplets_per_chunk = max_triplets_per_chunk
self.kg_triple_extract_template = (
kg_triple_extract_template or DEFAULT_KG_TRIPLET_EXTRACT_PROMPT
)
# NOTE: Partially format keyword extract template here.
self.kg_triple_extract_template = (
self.kg_triple_extract_template.partial_format(
max_knowledge_triplets=self.max_triplets_per_chunk
)
)
super().__init__(
documents=documents,
index_struct=index_struct,
llm_predictor=llm_predictor,
text_splitter=text_splitter,
**kwargs,
)
@classmethod
def get_query_map(self) -> Dict[str, Type[BaseGPTIndexQuery]]:
"""Get query map."""
return {
QueryMode.DEFAULT: GPTKGTableQuery,
}
def _extract_triplets(self, text: str) -> List[Tuple[str, str, str]]:
"""Extract keywords from text."""
response, _ = self._llm_predictor.predict(
self.kg_triple_extract_template,
text=text,
)
return self._parse_triplet_response(response)
@staticmethod
def _parse_triplet_response(response: str) -> List[Tuple[str, str, str]]:
knowledge_strs = response.strip().split("\n")
results = []
for text in knowledge_strs:
tokens = text[1:-1].split(",")
if len(tokens) != 3:
continue
subj, pred, obj = tokens
results.append((subj.strip(), pred.strip(), obj.strip()))
return results
def _build_fallback_text_splitter(self) -> TextSplitter:
# if not specified, use "smart" text splitter to ensure chunks fit in prompt
return self._prompt_helper.get_text_splitter_given_prompt(
self.kg_triple_extract_template, 1
)
def _build_index_from_documents(self, documents: Sequence[BaseDocument]) -> KG:
"""Build the index from documents."""
# do simple concatenation
index_struct = KG(table={})
for d in documents:
nodes = self._get_nodes_from_document(d)
for n in nodes:
# set doc id
node_id = get_new_id(set())
n.doc_id = node_id
triplets = self._extract_triplets(n.get_text())
logging.debug(f"> Extracted triplets: {triplets}")
for triplet in triplets:
index_struct.upsert_triplet(triplet, n)
if self.include_embeddings:
for i, triplet in enumerate(triplets):
self._embed_model.queue_text_for_embeddding(
str(triplet), str(triplet)
)
embed_outputs = self._embed_model.get_queued_text_embeddings()
for (rel_text, rel_embed) in zip(*embed_outputs):
index_struct.add_to_embedding_dict(rel_text, rel_embed)
return index_struct
def _insert(self, document: BaseDocument, **insert_kwargs: Any) -> None:
"""Insert a document."""
nodes = self._get_nodes_from_document(document)
for n in nodes:
# set doc id
node_id = get_new_id(set())
n.doc_id = node_id
triplets = self._extract_triplets(n.get_text())
logging.debug(f"Extracted triplets: {triplets}")
for triplet in triplets:
triplet_str = str(triplet)
self._index_struct.upsert_triplet(triplet, n)
if (
self.include_embeddings
and triplet_str not in self._index_struct.embedding_dict
):
rel_embedding = self._embed_model.get_text_embedding(triplet_str)
self.index_struct.add_to_embedding_dict(triplet_str, rel_embedding)
def _delete(self, doc_id: str, **delete_kwargs: Any) -> None:
"""Delete a document."""
raise NotImplementedError("Delete is not supported for KG index yet.")
def _preprocess_query(self, mode: QueryMode, query_kwargs: Dict) -> None:
"""Set the default embedding mode during query based on current index."""
if (
len(self.index_struct.embedding_dict) > 0
and "embedding_mode" not in query_kwargs
):
query_kwargs["embedding_mode"] = KGQueryMode.HYBRID
def get_networkx_graph(self) -> Any:
"""Get networkx representation of the graph structure.
NOTE: This function requires networkx to be installed.
NOTE: This is a beta feature.
"""
try:
import networkx as nx
except ImportError:
raise ImportError(
"Please install networkx to visualize the graph: `pip install networkx`"
)
g = nx.Graph()
# add nodes
for node_name in self.index_struct.table.keys():
g.add_node(node_name)
# add edges
rel_map = self.index_struct.rel_map
for keyword in rel_map.keys():
for obj, rel in rel_map[keyword]:
g.add_edge(keyword, obj, title=rel)
return g