File size: 7,403 Bytes
8a58cf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
"""Keyword-table based index.

Similar to a "hash table" in concept. LlamaIndex first tries
to extract keywords from the source text, and stores the
keywords as keys per item. It similarly extracts keywords
from the query text. Then, it tries to match those keywords to
existing keywords in the table.

"""

import logging
from typing import Any, Dict, List, Optional, Sequence, Tuple, Type

from gpt_index.data_structs.data_structs import KG
from gpt_index.indices.base import DOCUMENTS_INPUT, BaseGPTIndex
from gpt_index.indices.query.base import BaseGPTIndexQuery
from gpt_index.indices.query.knowledge_graph.query import GPTKGTableQuery, KGQueryMode
from gpt_index.indices.query.schema import QueryMode
from gpt_index.langchain_helpers.chain_wrapper import LLMPredictor
from gpt_index.langchain_helpers.text_splitter import TextSplitter
from gpt_index.prompts.default_prompts import (
    DEFAULT_KG_TRIPLET_EXTRACT_PROMPT,
    DEFAULT_QUERY_KEYWORD_EXTRACT_TEMPLATE,
)
from gpt_index.prompts.prompts import KnowledgeGraphPrompt
from gpt_index.schema import BaseDocument
from gpt_index.utils import get_new_id

DQKET = DEFAULT_QUERY_KEYWORD_EXTRACT_TEMPLATE


class GPTKnowledgeGraphIndex(BaseGPTIndex[KG]):
    """GPT Knowledge Graph Index.

    Build a KG by extracting triplets, and leveraging the KG during query-time.

    Args:
        kg_triple_extract_template (KnowledgeGraphPrompt): The prompt to use for
            extracting triplets.
        max_triplets_per_chunk (int): The maximum number of triplets to extract.

    """

    index_struct_cls = KG

    def __init__(
        self,
        documents: Optional[Sequence[DOCUMENTS_INPUT]] = None,
        index_struct: Optional[KG] = None,
        kg_triple_extract_template: Optional[KnowledgeGraphPrompt] = None,
        max_triplets_per_chunk: int = 10,
        llm_predictor: Optional[LLMPredictor] = None,
        text_splitter: Optional[TextSplitter] = None,
        include_embeddings: bool = False,
        **kwargs: Any,
    ) -> None:
        """Initialize params."""
        # need to set parameters before building index in base class.
        self.include_embeddings = include_embeddings
        self.max_triplets_per_chunk = max_triplets_per_chunk
        self.kg_triple_extract_template = (
            kg_triple_extract_template or DEFAULT_KG_TRIPLET_EXTRACT_PROMPT
        )
        # NOTE: Partially format keyword extract template here.
        self.kg_triple_extract_template = (
            self.kg_triple_extract_template.partial_format(
                max_knowledge_triplets=self.max_triplets_per_chunk
            )
        )
        super().__init__(
            documents=documents,
            index_struct=index_struct,
            llm_predictor=llm_predictor,
            text_splitter=text_splitter,
            **kwargs,
        )

    @classmethod
    def get_query_map(self) -> Dict[str, Type[BaseGPTIndexQuery]]:
        """Get query map."""
        return {
            QueryMode.DEFAULT: GPTKGTableQuery,
        }

    def _extract_triplets(self, text: str) -> List[Tuple[str, str, str]]:
        """Extract keywords from text."""
        response, _ = self._llm_predictor.predict(
            self.kg_triple_extract_template,
            text=text,
        )
        return self._parse_triplet_response(response)

    @staticmethod
    def _parse_triplet_response(response: str) -> List[Tuple[str, str, str]]:
        knowledge_strs = response.strip().split("\n")
        results = []
        for text in knowledge_strs:
            tokens = text[1:-1].split(",")
            if len(tokens) != 3:
                continue
            subj, pred, obj = tokens
            results.append((subj.strip(), pred.strip(), obj.strip()))
        return results

    def _build_fallback_text_splitter(self) -> TextSplitter:
        # if not specified, use "smart" text splitter to ensure chunks fit in prompt
        return self._prompt_helper.get_text_splitter_given_prompt(
            self.kg_triple_extract_template, 1
        )

    def _build_index_from_documents(self, documents: Sequence[BaseDocument]) -> KG:
        """Build the index from documents."""
        # do simple concatenation
        index_struct = KG(table={})
        for d in documents:
            nodes = self._get_nodes_from_document(d)
            for n in nodes:
                # set doc id
                node_id = get_new_id(set())
                n.doc_id = node_id

                triplets = self._extract_triplets(n.get_text())
                logging.debug(f"> Extracted triplets: {triplets}")
                for triplet in triplets:
                    index_struct.upsert_triplet(triplet, n)

                if self.include_embeddings:
                    for i, triplet in enumerate(triplets):
                        self._embed_model.queue_text_for_embeddding(
                            str(triplet), str(triplet)
                        )

                    embed_outputs = self._embed_model.get_queued_text_embeddings()
                    for (rel_text, rel_embed) in zip(*embed_outputs):
                        index_struct.add_to_embedding_dict(rel_text, rel_embed)

        return index_struct

    def _insert(self, document: BaseDocument, **insert_kwargs: Any) -> None:
        """Insert a document."""
        nodes = self._get_nodes_from_document(document)
        for n in nodes:
            # set doc id
            node_id = get_new_id(set())
            n.doc_id = node_id

            triplets = self._extract_triplets(n.get_text())
            logging.debug(f"Extracted triplets: {triplets}")
            for triplet in triplets:
                triplet_str = str(triplet)
                self._index_struct.upsert_triplet(triplet, n)
                if (
                    self.include_embeddings
                    and triplet_str not in self._index_struct.embedding_dict
                ):
                    rel_embedding = self._embed_model.get_text_embedding(triplet_str)
                    self.index_struct.add_to_embedding_dict(triplet_str, rel_embedding)

    def _delete(self, doc_id: str, **delete_kwargs: Any) -> None:
        """Delete a document."""
        raise NotImplementedError("Delete is not supported for KG index yet.")

    def _preprocess_query(self, mode: QueryMode, query_kwargs: Dict) -> None:
        """Set the default embedding mode during query based on current index."""
        if (
            len(self.index_struct.embedding_dict) > 0
            and "embedding_mode" not in query_kwargs
        ):
            query_kwargs["embedding_mode"] = KGQueryMode.HYBRID

    def get_networkx_graph(self) -> Any:
        """Get networkx representation of the graph structure.

        NOTE: This function requires networkx to be installed.
        NOTE: This is a beta feature.

        """
        try:
            import networkx as nx
        except ImportError:
            raise ImportError(
                "Please install networkx to visualize the graph: `pip install networkx`"
            )

        g = nx.Graph()
        # add nodes
        for node_name in self.index_struct.table.keys():
            g.add_node(node_name)

        # add edges
        rel_map = self.index_struct.rel_map
        for keyword in rel_map.keys():
            for obj, rel in rel_map[keyword]:
                g.add_edge(keyword, obj, title=rel)

        return g