Spaces:
Running
on
Zero
Running
on
Zero
from __future__ import annotations | |
import os | |
import gc | |
from tqdm import tqdm | |
import wandb | |
import torch | |
from torch.optim import AdamW | |
from torch.optim.lr_scheduler import LinearLR, SequentialLR, ConstantLR | |
from accelerate import Accelerator | |
from accelerate.utils import DistributedDataParallelKwargs | |
from diffrhythm.dataset.custom_dataset_align2f5 import LanceDiffusionDataset | |
from torch.utils.data import DataLoader, DistributedSampler | |
from ema_pytorch import EMA | |
from diffrhythm.model import CFM | |
from diffrhythm.model.utils import exists, default | |
import time | |
# from apex.optimizers.fused_adam import FusedAdam | |
# trainer | |
class Trainer: | |
def __init__( | |
self, | |
model: CFM, | |
args, | |
epochs, | |
learning_rate, | |
#dataloader, | |
num_warmup_updates=20000, | |
save_per_updates=1000, | |
checkpoint_path=None, | |
batch_size=32, | |
batch_size_type: str = "sample", | |
max_samples=32, | |
grad_accumulation_steps=1, | |
max_grad_norm=1.0, | |
noise_scheduler: str | None = None, | |
duration_predictor: torch.nn.Module | None = None, | |
wandb_project="test_e2-tts", | |
wandb_run_name="test_run", | |
wandb_resume_id: str = None, | |
last_per_steps=None, | |
accelerate_kwargs: dict = dict(), | |
ema_kwargs: dict = dict(), | |
bnb_optimizer: bool = False, | |
reset_lr: bool = False, | |
use_style_prompt: bool = False, | |
grad_ckpt: bool = False | |
): | |
self.args = args | |
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=False, ) | |
logger = "wandb" if wandb.api.api_key else None | |
#logger = None | |
print(f"Using logger: {logger}") | |
# print("-----------1-------------") | |
import tbe.common | |
# print("-----------2-------------") | |
self.accelerator = Accelerator( | |
log_with=logger, | |
kwargs_handlers=[ddp_kwargs], | |
gradient_accumulation_steps=grad_accumulation_steps, | |
**accelerate_kwargs, | |
) | |
# print("-----------3-------------") | |
if logger == "wandb": | |
if exists(wandb_resume_id): | |
init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name, "id": wandb_resume_id}} | |
else: | |
init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name}} | |
self.accelerator.init_trackers( | |
project_name=wandb_project, | |
init_kwargs=init_kwargs, | |
config={ | |
"epochs": epochs, | |
"learning_rate": learning_rate, | |
"num_warmup_updates": num_warmup_updates, | |
"batch_size": batch_size, | |
"batch_size_type": batch_size_type, | |
"max_samples": max_samples, | |
"grad_accumulation_steps": grad_accumulation_steps, | |
"max_grad_norm": max_grad_norm, | |
"gpus": self.accelerator.num_processes, | |
"noise_scheduler": noise_scheduler, | |
}, | |
) | |
self.precision = self.accelerator.state.mixed_precision | |
self.precision = self.precision.replace("no", "fp32") | |
print("!!!!!!!!!!!!!!!!!", self.precision) | |
self.model = model | |
#self.model = torch.compile(model) | |
#self.dataloader = dataloader | |
if self.is_main: | |
self.ema_model = EMA(model, include_online_model=False, **ema_kwargs) | |
self.ema_model.to(self.accelerator.device) | |
if self.accelerator.state.distributed_type in ["DEEPSPEED", "FSDP"]: | |
self.ema_model.half() | |
self.epochs = epochs | |
self.num_warmup_updates = num_warmup_updates | |
self.save_per_updates = save_per_updates | |
self.last_per_steps = default(last_per_steps, save_per_updates * grad_accumulation_steps) | |
self.checkpoint_path = default(checkpoint_path, "ckpts/test_e2-tts") | |
self.max_samples = max_samples | |
self.grad_accumulation_steps = grad_accumulation_steps | |
self.max_grad_norm = max_grad_norm | |
self.noise_scheduler = noise_scheduler | |
self.duration_predictor = duration_predictor | |
self.reset_lr = reset_lr | |
self.use_style_prompt = use_style_prompt | |
self.grad_ckpt = grad_ckpt | |
if bnb_optimizer: | |
import bitsandbytes as bnb | |
self.optimizer = bnb.optim.AdamW8bit(model.parameters(), lr=learning_rate) | |
else: | |
self.optimizer = AdamW(model.parameters(), lr=learning_rate) | |
#self.optimizer = FusedAdam(model.parameters(), lr=learning_rate) | |
#self.model = torch.compile(self.model) | |
if self.accelerator.state.distributed_type == "DEEPSPEED": | |
self.accelerator.state.deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu'] = batch_size | |
self.get_dataloader() | |
self.get_scheduler() | |
# self.get_constant_scheduler() | |
self.model, self.optimizer, self.scheduler, self.train_dataloader = self.accelerator.prepare(self.model, self.optimizer, self.scheduler, self.train_dataloader) | |
def get_scheduler(self): | |
warmup_steps = ( | |
self.num_warmup_updates * self.accelerator.num_processes | |
) # consider a fixed warmup steps while using accelerate multi-gpu ddp | |
total_steps = len(self.train_dataloader) * self.epochs / self.grad_accumulation_steps | |
decay_steps = total_steps - warmup_steps | |
warmup_scheduler = LinearLR(self.optimizer, start_factor=1e-8, end_factor=1.0, total_iters=warmup_steps) | |
decay_scheduler = LinearLR(self.optimizer, start_factor=1.0, end_factor=1e-8, total_iters=decay_steps) | |
# constant_scheduler = ConstantLR(self.optimizer, factor=1, total_iters=decay_steps) | |
self.scheduler = SequentialLR( | |
self.optimizer, schedulers=[warmup_scheduler, decay_scheduler], milestones=[warmup_steps] | |
) | |
def get_constant_scheduler(self): | |
total_steps = len(self.train_dataloader) * self.epochs / self.grad_accumulation_steps | |
self.scheduler = ConstantLR(self.optimizer, factor=1, total_iters=total_steps) | |
def get_dataloader(self): | |
prompt_path = self.args.prompt_path.split('|') | |
lrc_path = self.args.lrc_path.split('|') | |
latent_path = self.args.latent_path.split('|') | |
ldd = LanceDiffusionDataset(*LanceDiffusionDataset.init_data(self.args.dataset_path), \ | |
max_frames=self.args.max_frames, min_frames=self.args.min_frames, \ | |
align_lyrics=self.args.align_lyrics, lyrics_slice=self.args.lyrics_slice, \ | |
use_style_prompt=self.args.use_style_prompt, parse_lyrics=self.args.parse_lyrics, | |
lyrics_shift=self.args.lyrics_shift, downsample_rate=self.args.downsample_rate, \ | |
skip_empty_lyrics=self.args.skip_empty_lyrics, tokenizer_type=self.args.tokenizer_type, precision=self.precision, \ | |
start_time=time.time(), pure_prob=self.args.pure_prob) | |
# start_time = time.time() | |
self.train_dataloader = DataLoader( | |
dataset=ldd, | |
batch_size=self.args.batch_size, # 每个批次的样本数 | |
shuffle=True, # 是否随机打乱数据 | |
num_workers=4, # 用于加载数据的子进程数 | |
pin_memory=True, # 加速GPU训练 | |
collate_fn=ldd.custom_collate_fn, | |
persistent_workers=True | |
) | |
def is_main(self): | |
return self.accelerator.is_main_process | |
def save_checkpoint(self, step, last=False): | |
self.accelerator.wait_for_everyone() | |
if self.is_main: | |
checkpoint = dict( | |
model_state_dict=self.accelerator.unwrap_model(self.model).state_dict(), | |
optimizer_state_dict=self.accelerator.unwrap_model(self.optimizer).state_dict(), | |
ema_model_state_dict=self.ema_model.state_dict(), | |
scheduler_state_dict=self.scheduler.state_dict(), | |
step=step, | |
) | |
if not os.path.exists(self.checkpoint_path): | |
os.makedirs(self.checkpoint_path) | |
if last: | |
self.accelerator.save(checkpoint, f"{self.checkpoint_path}/model_last.pt") | |
print(f"Saved last checkpoint at step {step}") | |
else: | |
self.accelerator.save(checkpoint, f"{self.checkpoint_path}/model_{step}.pt") | |
def load_checkpoint(self): | |
if ( | |
not exists(self.checkpoint_path) | |
or not os.path.exists(self.checkpoint_path) | |
or not os.listdir(self.checkpoint_path) | |
): | |
return 0 | |
self.accelerator.wait_for_everyone() | |
if "model_last.pt" in os.listdir(self.checkpoint_path): | |
latest_checkpoint = "model_last.pt" | |
else: | |
latest_checkpoint = sorted( | |
[f for f in os.listdir(self.checkpoint_path) if f.endswith(".pt")], | |
key=lambda x: int("".join(filter(str.isdigit, x))), | |
)[-1] | |
checkpoint = torch.load(f"{self.checkpoint_path}/{latest_checkpoint}", map_location="cpu") | |
### **1. 过滤 `ema_model` 的不匹配参数** | |
if self.is_main: | |
ema_dict = self.ema_model.state_dict() | |
ema_checkpoint_dict = checkpoint["ema_model_state_dict"] | |
filtered_ema_dict = { | |
k: v for k, v in ema_checkpoint_dict.items() | |
if k in ema_dict and ema_dict[k].shape == v.shape # 仅加载 shape 匹配的参数 | |
} | |
print(f"Loading {len(filtered_ema_dict)} / {len(ema_checkpoint_dict)} ema_model params") | |
self.ema_model.load_state_dict(filtered_ema_dict, strict=False) | |
### **2. 过滤 `model` 的不匹配参数** | |
model_dict = self.accelerator.unwrap_model(self.model).state_dict() | |
checkpoint_model_dict = checkpoint["model_state_dict"] | |
filtered_model_dict = { | |
k: v for k, v in checkpoint_model_dict.items() | |
if k in model_dict and model_dict[k].shape == v.shape # 仅加载 shape 匹配的参数 | |
} | |
print(f"Loading {len(filtered_model_dict)} / {len(checkpoint_model_dict)} model params") | |
self.accelerator.unwrap_model(self.model).load_state_dict(filtered_model_dict, strict=False) | |
### **3. 加载优化器、调度器和步数** | |
if "step" in checkpoint: | |
if self.scheduler and not self.reset_lr: | |
self.scheduler.load_state_dict(checkpoint["scheduler_state_dict"]) | |
step = checkpoint["step"] | |
else: | |
step = 0 | |
del checkpoint | |
gc.collect() | |
print("Checkpoint loaded at step", step) | |
return step | |
def train(self, resumable_with_seed: int = None): | |
train_dataloader = self.train_dataloader | |
start_step = self.load_checkpoint() | |
global_step = start_step | |
if resumable_with_seed > 0: | |
orig_epoch_step = len(train_dataloader) | |
skipped_epoch = int(start_step // orig_epoch_step) | |
skipped_batch = start_step % orig_epoch_step | |
skipped_dataloader = self.accelerator.skip_first_batches(train_dataloader, num_batches=skipped_batch) | |
else: | |
skipped_epoch = 0 | |
for epoch in range(skipped_epoch, self.epochs): | |
self.model.train() | |
if resumable_with_seed > 0 and epoch == skipped_epoch: | |
progress_bar = tqdm( | |
skipped_dataloader, | |
desc=f"Epoch {epoch+1}/{self.epochs}", | |
unit="step", | |
disable=not self.accelerator.is_local_main_process, | |
initial=skipped_batch, | |
total=orig_epoch_step, | |
smoothing=0.15 | |
) | |
else: | |
progress_bar = tqdm( | |
train_dataloader, | |
desc=f"Epoch {epoch+1}/{self.epochs}", | |
unit="step", | |
disable=not self.accelerator.is_local_main_process, | |
smoothing=0.15 | |
) | |
for batch in progress_bar: | |
with self.accelerator.accumulate(self.model): | |
text_inputs = batch["lrc"] | |
mel_spec = batch["latent"].permute(0, 2, 1) | |
mel_lengths = batch["latent_lengths"] | |
style_prompt = batch["prompt"] | |
style_prompt_lens = batch["prompt_lengths"] | |
start_time = batch["start_time"] | |
loss, cond, pred = self.model( | |
mel_spec, text=text_inputs, lens=mel_lengths, noise_scheduler=self.noise_scheduler, | |
style_prompt=style_prompt if self.use_style_prompt else None, | |
style_prompt_lens=style_prompt_lens if self.use_style_prompt else None, | |
grad_ckpt=self.grad_ckpt, start_time=start_time | |
) | |
self.accelerator.backward(loss) | |
if self.max_grad_norm > 0 and self.accelerator.sync_gradients: | |
self.accelerator.clip_grad_norm_(self.model.parameters(), self.max_grad_norm) | |
self.optimizer.step() | |
self.scheduler.step() | |
self.optimizer.zero_grad() | |
if self.is_main: | |
self.ema_model.update() | |
global_step += 1 | |
if self.accelerator.is_local_main_process: | |
self.accelerator.log({"loss": loss.item(), "lr": self.scheduler.get_last_lr()[0]}, step=global_step) | |
progress_bar.set_postfix(step=str(global_step), loss=loss.item()) | |
if global_step % (self.save_per_updates * self.grad_accumulation_steps) == 0: | |
self.save_checkpoint(global_step) | |
if global_step % self.last_per_steps == 0: | |
self.save_checkpoint(global_step, last=True) | |
self.save_checkpoint(global_step, last=True) | |
self.accelerator.end_training() | |