Spaces:
Running
on
Zero
Running
on
Zero
test
Browse files- app.py +318 -0
- diffrhythm/config/defaults.ini +94 -0
- diffrhythm/config/diffrhythm-1b.json +13 -0
- diffrhythm/model/__init__.py +6 -0
- diffrhythm/model/__pycache__/__init__.cpython-310.pyc +0 -0
- diffrhythm/model/__pycache__/__init__.cpython-312.pyc +0 -0
- diffrhythm/model/__pycache__/cfm.cpython-310.pyc +0 -0
- diffrhythm/model/__pycache__/cfm.cpython-312.pyc +0 -0
- diffrhythm/model/__pycache__/custom_dataset.cpython-310.pyc +0 -0
- diffrhythm/model/__pycache__/custom_dataset_lrc_emb.cpython-310.pyc +0 -0
- diffrhythm/model/__pycache__/dataset.cpython-310.pyc +0 -0
- diffrhythm/model/__pycache__/dit.cpython-310.pyc +0 -0
- diffrhythm/model/__pycache__/modules.cpython-310.pyc +0 -0
- diffrhythm/model/__pycache__/trainer.cpython-310.pyc +0 -0
- diffrhythm/model/__pycache__/utils.cpython-310.pyc +0 -0
- diffrhythm/model/cfm.py +315 -0
- diffrhythm/model/dit.py +221 -0
- diffrhythm/model/modules.py +611 -0
- diffrhythm/model/trainer.py +350 -0
- diffrhythm/model/utils.py +182 -0
- prompt/gift_of_the_world.wav +0 -0
- prompt/little_happiness.wav +0 -0
- prompt/little_talks.wav +0 -0
- prompt/ltwyl.wav +0 -0
- prompt/most_beautiful_expectation.wav +0 -0
app.py
ADDED
@@ -0,0 +1,318 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from openai import OpenAI
|
3 |
+
import requests
|
4 |
+
import json
|
5 |
+
# from volcenginesdkarkruntime import Ark
|
6 |
+
import torch
|
7 |
+
import torchaudio
|
8 |
+
from einops import rearrange
|
9 |
+
import argparse
|
10 |
+
import json
|
11 |
+
import os
|
12 |
+
from tqdm import tqdm
|
13 |
+
import random
|
14 |
+
import numpy as np
|
15 |
+
import sys
|
16 |
+
from diffrhythm.infer.infer_utils import (
|
17 |
+
get_reference_latent,
|
18 |
+
get_lrc_token,
|
19 |
+
get_style_prompt,
|
20 |
+
prepare_model,
|
21 |
+
get_negative_style_prompt
|
22 |
+
)
|
23 |
+
from diffrhythm.infer.infer import inference
|
24 |
+
|
25 |
+
device='cuda'
|
26 |
+
cfm, tokenizer, muq, vae = prepare_model(device)
|
27 |
+
cfm = torch.compile(cfm)
|
28 |
+
|
29 |
+
def infer_music(lrc, ref_audio_path, max_frames=2048, device='cuda'):
|
30 |
+
|
31 |
+
# lrc_list = lrc.split("\n")
|
32 |
+
# print(lrc_list)
|
33 |
+
|
34 |
+
# return "./gift_of_the_world.wav"
|
35 |
+
lrc_prompt, start_time = get_lrc_token(lrc, tokenizer, device)
|
36 |
+
style_prompt = get_style_prompt(muq, ref_audio_path)
|
37 |
+
negative_style_prompt = get_negative_style_prompt(device)
|
38 |
+
latent_prompt = get_reference_latent(device, max_frames)
|
39 |
+
generated_song = inference(cfm_model=cfm,
|
40 |
+
vae_model=vae,
|
41 |
+
cond=latent_prompt,
|
42 |
+
text=lrc_prompt,
|
43 |
+
duration=max_frames,
|
44 |
+
style_prompt=style_prompt,
|
45 |
+
negative_style_prompt=negative_style_prompt,
|
46 |
+
start_time=start_time
|
47 |
+
)
|
48 |
+
return generated_song
|
49 |
+
|
50 |
+
def R1_infer1(theme, tags_gen, language):
|
51 |
+
try:
|
52 |
+
client = OpenAI(api_key="XXXX", base_url = "https://ark.cn-beijing.volces.com/api/v3")
|
53 |
+
|
54 |
+
llm_prompt = """
|
55 |
+
请围绕"{theme}"主题生成一首符合"{tags}"风格的完整歌词。生成的{language}语言的歌词。
|
56 |
+
### **歌曲结构要求**
|
57 |
+
1. 歌词应富有变化,使情绪递进,整体连贯有层次感。**每行歌词长度应自然变化**,切勿长度一致,导致很格式化。
|
58 |
+
2. **时间戳分配应根据歌曲的标签\歌词的情感、节奏来合理推测**,而非机械地按照歌词长度分配。
|
59 |
+
### **歌曲内容要求**
|
60 |
+
1. **第一句歌词的时间戳应考虑前奏长度**,避免歌词从 `[00:00.00]` 直接开始。
|
61 |
+
2. **严格按照 LRC 格式输出歌词**,每行格式为 `[mm:ss.xx]歌词内容`。
|
62 |
+
3. 输出的歌词不能有空行、括号,不能有其他解释内容,例如:副歌、桥段、结尾。
|
63 |
+
4. 输出必须是**纯净的 LRC**。
|
64 |
+
"""
|
65 |
+
|
66 |
+
response = client.chat.completions.create(
|
67 |
+
model="ep-20250215195652-lrff7",
|
68 |
+
messages=[
|
69 |
+
{"role": "system", "content": "You are a professional musician who has been invited to make music-related comments."},
|
70 |
+
{"role": "user", "content": llm_prompt.format(theme=theme, tags=tags_gen, language=language)},
|
71 |
+
],
|
72 |
+
stream=False
|
73 |
+
)
|
74 |
+
|
75 |
+
info = response.choices[0].message.content
|
76 |
+
|
77 |
+
return info
|
78 |
+
|
79 |
+
except requests.exceptions.RequestException as e:
|
80 |
+
print(f'请求出错: {e}')
|
81 |
+
return {}
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
def R1_infer2(tags_lyrics, lyrics_input):
|
86 |
+
client = OpenAI(api_key="XXX", base_url = "https://ark.cn-beijing.volces.com/api/v3")
|
87 |
+
|
88 |
+
llm_prompt = """
|
89 |
+
{lyrics_input}这是一首歌的歌词,每一行是一句歌词,{tags_lyrics}是我希望这首歌的风格,我现在想要给这首歌的每一句歌词打时间戳得到LRC,我希望时间戳分配应根据歌曲的标签、歌词的情感、节奏来合理推测,而非机械地按照歌词长度分配。第一句歌词的时间戳应考虑前奏长度,避免歌词从 `[00:00.00]` 直接开始。严格按照 LRC 格式输出歌词,每行格式为 `[mm:ss.xx]歌词内容`。最后的结果只输出LRC,不需要其他的解释。
|
90 |
+
"""
|
91 |
+
|
92 |
+
response = client.chat.completions.create(
|
93 |
+
model="ep-20250215195652-lrff7",
|
94 |
+
messages=[
|
95 |
+
{"role": "system", "content": "You are a professional musician who has been invited to make music-related comments."},
|
96 |
+
{"role": "user", "content": llm_prompt.format(lyrics_input=lyrics_input, tags_lyrics=tags_lyrics)},
|
97 |
+
],
|
98 |
+
stream=False
|
99 |
+
)
|
100 |
+
|
101 |
+
info = response.choices[0].message.content
|
102 |
+
|
103 |
+
return info
|
104 |
+
|
105 |
+
css = """
|
106 |
+
/* 固定文本域高度并强制滚动条 */
|
107 |
+
.lyrics-scroll-box textarea {
|
108 |
+
height: 300px !important; /* 固定高度 */
|
109 |
+
max-height: 500px !important; /* 最大高度 */
|
110 |
+
overflow-y: auto !important; /* 垂直滚动 */
|
111 |
+
white-space: pre-wrap; /* 保留换行 */
|
112 |
+
line-height: 1.5; /* 行高优化 */
|
113 |
+
}
|
114 |
+
"""
|
115 |
+
|
116 |
+
with gr.Blocks(css=css) as demo:
|
117 |
+
gr.Markdown("# DiffRhythm")
|
118 |
+
|
119 |
+
with gr.Tabs() as tabs:
|
120 |
+
|
121 |
+
# page 1
|
122 |
+
with gr.Tab("Music Generate", id=0):
|
123 |
+
with gr.Row():
|
124 |
+
with gr.Column():
|
125 |
+
with gr.Accordion("Best Practices Guide", open=False):
|
126 |
+
gr.Markdown("""
|
127 |
+
1. **Lyrics Format Requirements**
|
128 |
+
- Each line must follow: `[mm:ss.xx]Lyric content`
|
129 |
+
- Example of valid format:
|
130 |
+
```
|
131 |
+
[00:07.23]Fight me fight me fight me
|
132 |
+
[00:08.73]You made me so unlike me
|
133 |
+
```
|
134 |
+
|
135 |
+
2. **Generation Duration Limits**
|
136 |
+
- Current version supports maximum **95 seconds** of music generation
|
137 |
+
- Total timestamps should not exceed 01:35.00 (95 seconds)
|
138 |
+
|
139 |
+
3. **Audio Prompt Requirements**
|
140 |
+
- Reference audio should be ≥10 seconds for optimal results
|
141 |
+
- Shorter clips may lead to incoherent generation
|
142 |
+
""")
|
143 |
+
lrc = gr.Textbox(
|
144 |
+
label="Lrc",
|
145 |
+
placeholder="Input the full lyrics",
|
146 |
+
lines=12,
|
147 |
+
max_lines=50,
|
148 |
+
elem_classes="lyrics-scroll-box"
|
149 |
+
)
|
150 |
+
audio_prompt = gr.Audio(label="Audio Prompt", type="filepath")
|
151 |
+
|
152 |
+
with gr.Column():
|
153 |
+
lyrics_btn = gr.Button("Submit", variant="primary")
|
154 |
+
audio_output = gr.Audio(label="Audio Result", type="filepath", elem_id="audio_output")
|
155 |
+
|
156 |
+
|
157 |
+
gr.Examples(
|
158 |
+
examples=[
|
159 |
+
["./gift_of_the_world.wav"],
|
160 |
+
["./most_beautiful_expectation.wav"],
|
161 |
+
["./ltwyl.wav"]
|
162 |
+
],
|
163 |
+
inputs=[audio_prompt],
|
164 |
+
label="Audio Examples",
|
165 |
+
examples_per_page=3
|
166 |
+
)
|
167 |
+
|
168 |
+
gr.Examples(
|
169 |
+
examples=[
|
170 |
+
["""[00:10.00]Moonlight spills through broken blinds
|
171 |
+
[00:13.20]Your shadow dances on the dashboard shrine
|
172 |
+
[00:16.85]Neon ghosts in gasoline rain
|
173 |
+
[00:20.40]I hear your laughter down the midnight train
|
174 |
+
[00:24.15]Static whispers through frayed wires
|
175 |
+
[00:27.65]Guitar strings hum our cathedral choirs
|
176 |
+
[00:31.30]Flicker screens show reruns of June
|
177 |
+
[00:34.90]I'm drowning in this mercury lagoon
|
178 |
+
[00:38.55]Electric veins pulse through concrete skies
|
179 |
+
[00:42.10]Your name echoes in the hollow where my heartbeat lies
|
180 |
+
[00:45.75]We're satellites trapped in parallel light
|
181 |
+
[00:49.25]Burning through the atmosphere of endless night
|
182 |
+
[01:00.00]Dusty vinyl spins reverse
|
183 |
+
[01:03.45]Our polaroid timeline bleeds through the verse
|
184 |
+
[01:07.10]Telescope aimed at dead stars
|
185 |
+
[01:10.65]Still tracing constellations through prison bars
|
186 |
+
[01:14.30]Electric veins pulse through concrete skies
|
187 |
+
[01:17.85]Your name echoes in the hollow where my heartbeat lies
|
188 |
+
[01:21.50]We're satellites trapped in parallel light
|
189 |
+
[01:25.05]Burning through the atmosphere of endless night
|
190 |
+
[02:10.00]Clockwork gears grind moonbeams to rust
|
191 |
+
[02:13.50]Our fingerprint smudged by interstellar dust
|
192 |
+
[02:17.15]Velvet thunder rolls through my veins
|
193 |
+
[02:20.70]Chasing phantom trains through solar plane
|
194 |
+
[02:24.35]Electric veins pulse through concrete skies
|
195 |
+
[02:27.90]Your name echoes in the hollow where my heartbeat lies"""],
|
196 |
+
["""[00:05.00]Stardust whispers in your eyes
|
197 |
+
[00:09.30]Moonlight paints our silhouettes
|
198 |
+
[00:13.75]Tides bring secrets from the deep
|
199 |
+
[00:18.20]Where forever's breath is kept
|
200 |
+
[00:22.90]We dance through constellations' maze
|
201 |
+
[00:27.15]Footprints melt in cosmic waves
|
202 |
+
[00:31.65]Horizons hum our silent vow
|
203 |
+
[00:36.10]Time unravels here and now
|
204 |
+
[00:40.85]Eternal embers in the night oh oh oh
|
205 |
+
[00:45.25]Healing scars with liquid light
|
206 |
+
[00:49.70]Galaxies write our refrain
|
207 |
+
[00:54.15]Love reborn in endless rain
|
208 |
+
[01:15.30]Paper boats of memories
|
209 |
+
[01:19.75]Float through veins of ancient trees
|
210 |
+
[01:24.20]Your laughter spins aurora threads
|
211 |
+
[01:28.65]Weaving dawn through featherbed"""]
|
212 |
+
],
|
213 |
+
inputs=[lrc], # 只绑定到歌词输入
|
214 |
+
label="Lrc Examples",
|
215 |
+
examples_per_page=2
|
216 |
+
)
|
217 |
+
|
218 |
+
# page 2
|
219 |
+
with gr.Tab("LLM Generate LRC", id=1):
|
220 |
+
with gr.Row():
|
221 |
+
with gr.Column():
|
222 |
+
with gr.Accordion("Notice", open=False):
|
223 |
+
gr.Markdown("**Two Generation Modes:**\n1. Generate from theme & tags\n2. Add timestamps to existing lyrics")
|
224 |
+
|
225 |
+
with gr.Group():
|
226 |
+
gr.Markdown("### Method 1: Generate from Theme")
|
227 |
+
theme = gr.Textbox(label="theme", placeholder="Enter song theme, e.g. Love and Heartbreak")
|
228 |
+
tags_gen = gr.Textbox(label="tags", placeholder="Example: male pop confidence healing")
|
229 |
+
language = gr.Dropdown(["zh", "en"], label="language", value="en")
|
230 |
+
gen_from_theme_btn = gr.Button("Generate LRC (From Theme)", variant="primary")
|
231 |
+
|
232 |
+
with gr.Group(visible=True):
|
233 |
+
gr.Markdown("### Method 2: Add Timestamps to Lyrics")
|
234 |
+
tags_lyrics = gr.Textbox(label="tags", placeholder="Example: female ballad piano slow")
|
235 |
+
lyrics_input = gr.Textbox(
|
236 |
+
label="Raw Lyrics (without timestamps)",
|
237 |
+
placeholder="Enter plain lyrics (without timestamps), e.g.:\nYesterday\nAll my troubles...",
|
238 |
+
lines=12,
|
239 |
+
max_lines=50,
|
240 |
+
elem_classes="lyrics-scroll-box"
|
241 |
+
)
|
242 |
+
gen_from_lyrics_btn = gr.Button("Generate LRC (From Lyrics)", variant="primary")
|
243 |
+
|
244 |
+
with gr.Column():
|
245 |
+
lrc_output = gr.Textbox(
|
246 |
+
label="Generated LRC Lyrics",
|
247 |
+
placeholder="Timed lyrics will appear here",
|
248 |
+
lines=50,
|
249 |
+
elem_classes="lrc-output",
|
250 |
+
show_copy_button=True
|
251 |
+
)
|
252 |
+
|
253 |
+
# Examples section
|
254 |
+
gr.Examples(
|
255 |
+
examples=[
|
256 |
+
[
|
257 |
+
"Love and Heartbreak",
|
258 |
+
"female vocal emotional piano pop",
|
259 |
+
"en"
|
260 |
+
],
|
261 |
+
[
|
262 |
+
"Heroic Epic",
|
263 |
+
"male choir orchestral powerful",
|
264 |
+
"zh"
|
265 |
+
]
|
266 |
+
],
|
267 |
+
inputs=[theme, tags_gen, language],
|
268 |
+
label="Examples: Generate from Theme"
|
269 |
+
)
|
270 |
+
|
271 |
+
gr.Examples(
|
272 |
+
examples=[
|
273 |
+
[
|
274 |
+
"acoustic folk happy",
|
275 |
+
"""I'm sitting here in the boring room
|
276 |
+
It's just another rainy Sunday afternoon"""
|
277 |
+
],
|
278 |
+
[
|
279 |
+
"electronic dance energetic",
|
280 |
+
"""We're living in a material world
|
281 |
+
And I am a material girl"""
|
282 |
+
]
|
283 |
+
],
|
284 |
+
inputs=[tags_lyrics, lyrics_input],
|
285 |
+
label="Examples: Generate from Lyrics"
|
286 |
+
)
|
287 |
+
|
288 |
+
# Bind functions
|
289 |
+
gen_from_theme_btn.click(
|
290 |
+
fn=R1_infer1,
|
291 |
+
inputs=[theme, tags_gen, language],
|
292 |
+
outputs=lrc_output
|
293 |
+
)
|
294 |
+
|
295 |
+
gen_from_lyrics_btn.click(
|
296 |
+
fn=R1_infer2,
|
297 |
+
inputs=[tags_lyrics, lyrics_input],
|
298 |
+
outputs=lrc_output
|
299 |
+
)
|
300 |
+
|
301 |
+
tabs.select(
|
302 |
+
lambda s: None,
|
303 |
+
None,
|
304 |
+
None
|
305 |
+
)
|
306 |
+
|
307 |
+
lyrics_btn.click(
|
308 |
+
fn=infer_music,
|
309 |
+
inputs=[lrc, audio_prompt],
|
310 |
+
outputs=audio_output
|
311 |
+
)
|
312 |
+
|
313 |
+
demo.queue().launch(show_api=False, show_error=True)
|
314 |
+
|
315 |
+
|
316 |
+
|
317 |
+
if __name__ == "__main__":
|
318 |
+
demo.launch()
|
diffrhythm/config/defaults.ini
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
[DEFAULTS]
|
3 |
+
|
4 |
+
#name of the run
|
5 |
+
exp_name = F5
|
6 |
+
|
7 |
+
# the batch size
|
8 |
+
batch_size = 8
|
9 |
+
|
10 |
+
# the chunk size
|
11 |
+
max_frames = 3000
|
12 |
+
min_frames = 10
|
13 |
+
|
14 |
+
# number of CPU workers for the DataLoader
|
15 |
+
num_workers = 4
|
16 |
+
|
17 |
+
# the random seed
|
18 |
+
seed = 42
|
19 |
+
|
20 |
+
# Batches for gradient accumulation
|
21 |
+
accum_batches = 1
|
22 |
+
|
23 |
+
# Number of steps between checkpoints
|
24 |
+
checkpoint_every = 10000
|
25 |
+
|
26 |
+
# trainer checkpoint file to restart training from
|
27 |
+
ckpt_path = ''
|
28 |
+
|
29 |
+
# model checkpoint file to start a new training run from
|
30 |
+
pretrained_ckpt_path = ''
|
31 |
+
|
32 |
+
# Checkpoint path for the pretransform model if needed
|
33 |
+
pretransform_ckpt_path = ''
|
34 |
+
|
35 |
+
# configuration model specifying model hyperparameters
|
36 |
+
model_config = ''
|
37 |
+
|
38 |
+
# configuration for datasets
|
39 |
+
dataset_config = ''
|
40 |
+
|
41 |
+
# directory to save the checkpoints in
|
42 |
+
save_dir = ''
|
43 |
+
|
44 |
+
# grad norm
|
45 |
+
max_grad_norm = 1.0
|
46 |
+
|
47 |
+
# grad accu
|
48 |
+
grad_accumulation_steps = 1
|
49 |
+
|
50 |
+
# lr
|
51 |
+
learning_rate = 7.5e-5
|
52 |
+
|
53 |
+
# epoch
|
54 |
+
epochs = 110
|
55 |
+
|
56 |
+
# warmup steps
|
57 |
+
num_warmup_updates = 2000
|
58 |
+
|
59 |
+
# save checkpoint per steps
|
60 |
+
save_per_updates = 5000
|
61 |
+
|
62 |
+
# save last checkpoint per steps
|
63 |
+
last_per_steps = 5000
|
64 |
+
|
65 |
+
prompt_path = "/mnt/sfs/music/lance/style-lance-full|/mnt/sfs/music/lance/style-lance-cnen-music-second"
|
66 |
+
lrc_path = "/mnt/sfs/music/lance/lrc-lance-emb-full|/mnt/sfs/music/lance/lrc-lance-cnen-second"
|
67 |
+
latent_path = "/mnt/sfs/music/lance/latent-lance|/mnt/sfs/music/lance/latent-lance-cnen-music-second-1|/mnt/sfs/music/lance/latent-lance-cnen-music-second-2"
|
68 |
+
|
69 |
+
audio_drop_prob = 0.3
|
70 |
+
cond_drop_prob = 0.0
|
71 |
+
style_drop_prob = 0.1
|
72 |
+
lrc_drop_prob = 0.1
|
73 |
+
|
74 |
+
align_lyrics = 0
|
75 |
+
lyrics_slice = 0
|
76 |
+
parse_lyrics = 1
|
77 |
+
skip_empty_lyrics = 0
|
78 |
+
lyrics_shift = -1
|
79 |
+
|
80 |
+
use_style_prompt = 1
|
81 |
+
|
82 |
+
tokenizer_type = gpt2
|
83 |
+
|
84 |
+
reset_lr = 0
|
85 |
+
|
86 |
+
resumable_with_seed = 666
|
87 |
+
|
88 |
+
downsample_rate = 2048
|
89 |
+
|
90 |
+
grad_ckpt = 0
|
91 |
+
|
92 |
+
dataset_path = "/mnt/sfs/music/hkchen/workspace/F5-TTS-HW/filelists/music123latent_asred_bpmstyle_cnen_pure1"
|
93 |
+
|
94 |
+
pure_prob = 0.0
|
diffrhythm/config/diffrhythm-1b.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_type": "diffrhythm",
|
3 |
+
"model": {
|
4 |
+
"dim": 2048,
|
5 |
+
"depth": 16,
|
6 |
+
"heads": 32,
|
7 |
+
"ff_mult": 4,
|
8 |
+
"text_dim": 512,
|
9 |
+
"conv_layers": 4,
|
10 |
+
"mel_dim": 64,
|
11 |
+
"text_num_embeds": 363
|
12 |
+
}
|
13 |
+
}
|
diffrhythm/model/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffrhythm.model.cfm import CFM
|
2 |
+
|
3 |
+
from diffrhythm.model.dit import DiT
|
4 |
+
|
5 |
+
|
6 |
+
__all__ = ["CFM"]
|
diffrhythm/model/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (290 Bytes). View file
|
|
diffrhythm/model/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (508 Bytes). View file
|
|
diffrhythm/model/__pycache__/cfm.cpython-310.pyc
ADDED
Binary file (6.28 kB). View file
|
|
diffrhythm/model/__pycache__/cfm.cpython-312.pyc
ADDED
Binary file (10.7 kB). View file
|
|
diffrhythm/model/__pycache__/custom_dataset.cpython-310.pyc
ADDED
Binary file (11.5 kB). View file
|
|
diffrhythm/model/__pycache__/custom_dataset_lrc_emb.cpython-310.pyc
ADDED
Binary file (10.5 kB). View file
|
|
diffrhythm/model/__pycache__/dataset.cpython-310.pyc
ADDED
Binary file (8.04 kB). View file
|
|
diffrhythm/model/__pycache__/dit.cpython-310.pyc
ADDED
Binary file (5.61 kB). View file
|
|
diffrhythm/model/__pycache__/modules.cpython-310.pyc
ADDED
Binary file (15.9 kB). View file
|
|
diffrhythm/model/__pycache__/trainer.cpython-310.pyc
ADDED
Binary file (9.13 kB). View file
|
|
diffrhythm/model/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (6.03 kB). View file
|
|
diffrhythm/model/cfm.py
ADDED
@@ -0,0 +1,315 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
ein notation:
|
3 |
+
b - batch
|
4 |
+
n - sequence
|
5 |
+
nt - text sequence
|
6 |
+
nw - raw wave length
|
7 |
+
d - dimension
|
8 |
+
"""
|
9 |
+
|
10 |
+
from __future__ import annotations
|
11 |
+
from typing import Callable
|
12 |
+
from random import random
|
13 |
+
|
14 |
+
import torch
|
15 |
+
from torch import nn
|
16 |
+
import torch
|
17 |
+
import torch.nn.functional as F
|
18 |
+
from torch.nn.utils.rnn import pad_sequence
|
19 |
+
|
20 |
+
from torchdiffeq import odeint
|
21 |
+
|
22 |
+
from diffrhythm.model.modules import MelSpec
|
23 |
+
from diffrhythm.model.utils import (
|
24 |
+
default,
|
25 |
+
exists,
|
26 |
+
list_str_to_idx,
|
27 |
+
list_str_to_tensor,
|
28 |
+
lens_to_mask,
|
29 |
+
mask_from_frac_lengths,
|
30 |
+
)
|
31 |
+
|
32 |
+
def custom_mask_from_start_end_indices(seq_len: int["b"], start: int["b"], end: int["b"], device, max_seq_len): # noqa: F722 F821
|
33 |
+
max_seq_len = max_seq_len
|
34 |
+
seq = torch.arange(max_seq_len, device=device).long()
|
35 |
+
start_mask = seq[None, :] >= start[:, None]
|
36 |
+
end_mask = seq[None, :] < end[:, None]
|
37 |
+
return start_mask & end_mask
|
38 |
+
|
39 |
+
class CFM(nn.Module):
|
40 |
+
def __init__(
|
41 |
+
self,
|
42 |
+
transformer: nn.Module,
|
43 |
+
sigma=0.0,
|
44 |
+
odeint_kwargs: dict = dict(
|
45 |
+
# atol = 1e-5,
|
46 |
+
# rtol = 1e-5,
|
47 |
+
method="euler" # 'midpoint'
|
48 |
+
# method="adaptive_heun" # dopri5
|
49 |
+
),
|
50 |
+
odeint_options: dict = dict(
|
51 |
+
min_step=0.05
|
52 |
+
),
|
53 |
+
audio_drop_prob=0.3,
|
54 |
+
cond_drop_prob=0.2,
|
55 |
+
style_drop_prob=0.1,
|
56 |
+
lrc_drop_prob=0.1,
|
57 |
+
num_channels=None,
|
58 |
+
frac_lengths_mask: tuple[float, float] = (0.7, 1.0),
|
59 |
+
vocab_char_map: dict[str:int] | None = None,
|
60 |
+
use_style_prompt: bool = False
|
61 |
+
):
|
62 |
+
super().__init__()
|
63 |
+
|
64 |
+
self.frac_lengths_mask = frac_lengths_mask
|
65 |
+
|
66 |
+
self.num_channels = num_channels
|
67 |
+
|
68 |
+
# classifier-free guidance
|
69 |
+
self.audio_drop_prob = audio_drop_prob
|
70 |
+
self.cond_drop_prob = cond_drop_prob
|
71 |
+
self.style_drop_prob = style_drop_prob
|
72 |
+
self.lrc_drop_prob = lrc_drop_prob
|
73 |
+
|
74 |
+
print(f"audio drop prob -> {self.audio_drop_prob}; style_drop_prob -> {self.style_drop_prob}; lrc_drop_prob: {self.lrc_drop_prob}")
|
75 |
+
|
76 |
+
# transformer
|
77 |
+
self.transformer = transformer
|
78 |
+
dim = transformer.dim
|
79 |
+
self.dim = dim
|
80 |
+
|
81 |
+
# conditional flow related
|
82 |
+
self.sigma = sigma
|
83 |
+
|
84 |
+
# sampling related
|
85 |
+
self.odeint_kwargs = odeint_kwargs
|
86 |
+
# print(f"ODE SOLVER: {self.odeint_kwargs['method']}")
|
87 |
+
|
88 |
+
self.odeint_options = odeint_options
|
89 |
+
|
90 |
+
# vocab map for tokenization
|
91 |
+
self.vocab_char_map = vocab_char_map
|
92 |
+
|
93 |
+
self.use_style_prompt = use_style_prompt
|
94 |
+
|
95 |
+
@property
|
96 |
+
def device(self):
|
97 |
+
return next(self.parameters()).device
|
98 |
+
|
99 |
+
@torch.no_grad()
|
100 |
+
def sample(
|
101 |
+
self,
|
102 |
+
cond: float["b n d"] | float["b nw"], # noqa: F722
|
103 |
+
text: int["b nt"] | list[str], # noqa: F722
|
104 |
+
duration: int | int["b"], # noqa: F821
|
105 |
+
*,
|
106 |
+
style_prompt = None,
|
107 |
+
style_prompt_lens = None,
|
108 |
+
negative_style_prompt = None,
|
109 |
+
lens: int["b"] | None = None, # noqa: F821
|
110 |
+
steps=32,
|
111 |
+
cfg_strength=4.0,
|
112 |
+
sway_sampling_coef=None,
|
113 |
+
seed: int | None = None,
|
114 |
+
max_duration=4096,
|
115 |
+
vocoder: Callable[[float["b d n"]], float["b nw"]] | None = None, # noqa: F722
|
116 |
+
no_ref_audio=False,
|
117 |
+
duplicate_test=False,
|
118 |
+
t_inter=0.1,
|
119 |
+
edit_mask=None,
|
120 |
+
start_time=None,
|
121 |
+
latent_pred_start_frame=0,
|
122 |
+
latent_pred_end_frame=2048,
|
123 |
+
):
|
124 |
+
self.eval()
|
125 |
+
|
126 |
+
if next(self.parameters()).dtype == torch.float16:
|
127 |
+
cond = cond.half()
|
128 |
+
|
129 |
+
# raw wave
|
130 |
+
|
131 |
+
if cond.shape[1] > duration:
|
132 |
+
cond = cond[:, :duration, :]
|
133 |
+
|
134 |
+
if cond.ndim == 2:
|
135 |
+
cond = self.mel_spec(cond)
|
136 |
+
cond = cond.permute(0, 2, 1)
|
137 |
+
assert cond.shape[-1] == self.num_channels
|
138 |
+
|
139 |
+
batch, cond_seq_len, device = *cond.shape[:2], cond.device
|
140 |
+
if not exists(lens):
|
141 |
+
lens = torch.full((batch,), cond_seq_len, device=device, dtype=torch.long)
|
142 |
+
|
143 |
+
# text
|
144 |
+
|
145 |
+
if isinstance(text, list):
|
146 |
+
if exists(self.vocab_char_map):
|
147 |
+
text = list_str_to_idx(text, self.vocab_char_map).to(device)
|
148 |
+
else:
|
149 |
+
text = list_str_to_tensor(text).to(device)
|
150 |
+
assert text.shape[0] == batch
|
151 |
+
|
152 |
+
if exists(text):
|
153 |
+
text_lens = (text != -1).sum(dim=-1)
|
154 |
+
#lens = torch.maximum(text_lens, lens) # make sure lengths are at least those of the text characters
|
155 |
+
|
156 |
+
# duration
|
157 |
+
# import pdb; pdb.set_trace()
|
158 |
+
cond_mask = lens_to_mask(lens)
|
159 |
+
if edit_mask is not None:
|
160 |
+
cond_mask = cond_mask & edit_mask
|
161 |
+
|
162 |
+
latent_pred_start_frame = torch.tensor([latent_pred_start_frame]).to(cond.device)
|
163 |
+
latent_pred_end_frame = duration
|
164 |
+
latent_pred_end_frame = torch.tensor([latent_pred_end_frame]).to(cond.device)
|
165 |
+
fixed_span_mask = custom_mask_from_start_end_indices(cond_seq_len, latent_pred_start_frame, latent_pred_end_frame, device=cond.device, max_seq_len=duration)
|
166 |
+
|
167 |
+
fixed_span_mask = fixed_span_mask.unsqueeze(-1)
|
168 |
+
step_cond = torch.where(fixed_span_mask, torch.zeros_like(cond), cond)
|
169 |
+
|
170 |
+
if isinstance(duration, int):
|
171 |
+
duration = torch.full((batch,), duration, device=device, dtype=torch.long)
|
172 |
+
|
173 |
+
# duration = torch.maximum(lens + 1, duration) # just add one token so something is generated
|
174 |
+
duration = duration.clamp(max=max_duration)
|
175 |
+
max_duration = duration.amax()
|
176 |
+
|
177 |
+
# duplicate test corner for inner time step oberservation
|
178 |
+
if duplicate_test:
|
179 |
+
test_cond = F.pad(cond, (0, 0, cond_seq_len, max_duration - 2 * cond_seq_len), value=0.0)
|
180 |
+
|
181 |
+
# cond = F.pad(cond, (0, 0, 0, max_duration - cond_seq_len), value=0.0) # [b, t, d]
|
182 |
+
# cond_mask = F.pad(cond_mask, (0, max_duration - cond_mask.shape[-1]), value=False) # [b, max_duration]
|
183 |
+
# cond_mask = cond_mask.unsqueeze(-1) #[b, t, d]
|
184 |
+
# step_cond = torch.where(
|
185 |
+
# cond_mask, cond, torch.zeros_like(cond)
|
186 |
+
# ) # allow direct control (cut cond audio) with lens passed in
|
187 |
+
|
188 |
+
if batch > 1:
|
189 |
+
mask = lens_to_mask(duration)
|
190 |
+
else: # save memory and speed up, as single inference need no mask currently
|
191 |
+
mask = None
|
192 |
+
|
193 |
+
# test for no ref audio
|
194 |
+
if no_ref_audio:
|
195 |
+
cond = torch.zeros_like(cond)
|
196 |
+
|
197 |
+
|
198 |
+
def fn(t, x):
|
199 |
+
# at each step, conditioning is fixed
|
200 |
+
# step_cond = torch.where(cond_mask, cond, torch.zeros_like(cond))
|
201 |
+
|
202 |
+
# predict flow
|
203 |
+
pred = self.transformer(
|
204 |
+
x=x, cond=step_cond, text=text, time=t, mask=mask, drop_audio_cond=False, drop_text=False, drop_prompt=False,
|
205 |
+
style_prompt=style_prompt, style_prompt_lens=style_prompt_lens, start_time=start_time
|
206 |
+
)
|
207 |
+
if cfg_strength < 1e-5:
|
208 |
+
return pred
|
209 |
+
|
210 |
+
null_pred = self.transformer(
|
211 |
+
x=x, cond=step_cond, text=text, time=t, mask=mask, drop_audio_cond=True, drop_text=True, drop_prompt=False,
|
212 |
+
style_prompt=negative_style_prompt, style_prompt_lens=style_prompt_lens, start_time=start_time
|
213 |
+
)
|
214 |
+
return pred + (pred - null_pred) * cfg_strength
|
215 |
+
|
216 |
+
# noise input
|
217 |
+
# to make sure batch inference result is same with different batch size, and for sure single inference
|
218 |
+
# still some difference maybe due to convolutional layers
|
219 |
+
y0 = []
|
220 |
+
for dur in duration:
|
221 |
+
if exists(seed):
|
222 |
+
torch.manual_seed(seed)
|
223 |
+
y0.append(torch.randn(dur, self.num_channels, device=self.device, dtype=step_cond.dtype))
|
224 |
+
y0 = pad_sequence(y0, padding_value=0, batch_first=True)
|
225 |
+
|
226 |
+
t_start = 0
|
227 |
+
|
228 |
+
# duplicate test corner for inner time step oberservation
|
229 |
+
if duplicate_test:
|
230 |
+
t_start = t_inter
|
231 |
+
y0 = (1 - t_start) * y0 + t_start * test_cond
|
232 |
+
steps = int(steps * (1 - t_start))
|
233 |
+
|
234 |
+
t = torch.linspace(t_start, 1, steps, device=self.device, dtype=step_cond.dtype)
|
235 |
+
if sway_sampling_coef is not None:
|
236 |
+
t = t + sway_sampling_coef * (torch.cos(torch.pi / 2 * t) - 1 + t)
|
237 |
+
|
238 |
+
trajectory = odeint(fn, y0, t, **self.odeint_kwargs)
|
239 |
+
|
240 |
+
sampled = trajectory[-1]
|
241 |
+
out = sampled
|
242 |
+
# out = torch.where(cond_mask, cond, out)
|
243 |
+
out = torch.where(fixed_span_mask, out, cond)
|
244 |
+
|
245 |
+
if exists(vocoder):
|
246 |
+
out = out.permute(0, 2, 1)
|
247 |
+
out = vocoder(out)
|
248 |
+
|
249 |
+
return out, trajectory
|
250 |
+
|
251 |
+
def forward(
|
252 |
+
self,
|
253 |
+
inp: float["b n d"] | float["b nw"], # mel or raw wave # noqa: F722
|
254 |
+
text: int["b nt"] | list[str], # noqa: F722
|
255 |
+
style_prompt = None,
|
256 |
+
style_prompt_lens = None,
|
257 |
+
lens: int["b"] | None = None, # noqa: F821
|
258 |
+
noise_scheduler: str | None = None,
|
259 |
+
grad_ckpt = False,
|
260 |
+
start_time = None,
|
261 |
+
):
|
262 |
+
|
263 |
+
batch, seq_len, dtype, device, _σ1 = *inp.shape[:2], inp.dtype, self.device, self.sigma
|
264 |
+
|
265 |
+
# lens and mask
|
266 |
+
if not exists(lens):
|
267 |
+
lens = torch.full((batch,), seq_len, device=device)
|
268 |
+
|
269 |
+
mask = lens_to_mask(lens, length=seq_len) # useless here, as collate_fn will pad to max length in batch
|
270 |
+
|
271 |
+
# get a random span to mask out for training conditionally
|
272 |
+
frac_lengths = torch.zeros((batch,), device=self.device).float().uniform_(*self.frac_lengths_mask)
|
273 |
+
rand_span_mask = mask_from_frac_lengths(lens, frac_lengths)
|
274 |
+
|
275 |
+
if exists(mask):
|
276 |
+
rand_span_mask = mask
|
277 |
+
# rand_span_mask &= mask
|
278 |
+
|
279 |
+
# mel is x1
|
280 |
+
x1 = inp
|
281 |
+
|
282 |
+
# x0 is gaussian noise
|
283 |
+
x0 = torch.randn_like(x1)
|
284 |
+
|
285 |
+
# time step
|
286 |
+
# time = torch.rand((batch,), dtype=dtype, device=self.device)
|
287 |
+
time = torch.normal(mean=0, std=1, size=(batch,), device=self.device)
|
288 |
+
time = torch.nn.functional.sigmoid(time)
|
289 |
+
# TODO. noise_scheduler
|
290 |
+
|
291 |
+
# sample xt (φ_t(x) in the paper)
|
292 |
+
t = time.unsqueeze(-1).unsqueeze(-1)
|
293 |
+
φ = (1 - t) * x0 + t * x1
|
294 |
+
flow = x1 - x0
|
295 |
+
|
296 |
+
# only predict what is within the random mask span for infilling
|
297 |
+
cond = torch.where(rand_span_mask[..., None], torch.zeros_like(x1), x1)
|
298 |
+
|
299 |
+
# transformer and cfg training with a drop rate
|
300 |
+
drop_audio_cond = random() < self.audio_drop_prob # p_drop in voicebox paper
|
301 |
+
drop_text = random() < self.lrc_drop_prob
|
302 |
+
drop_prompt = random() < self.style_drop_prob
|
303 |
+
|
304 |
+
# if want rigourously mask out padding, record in collate_fn in dataset.py, and pass in here
|
305 |
+
# adding mask will use more memory, thus also need to adjust batchsampler with scaled down threshold for long sequences
|
306 |
+
pred = self.transformer(
|
307 |
+
x=φ, cond=cond, text=text, time=time, drop_audio_cond=drop_audio_cond, drop_text=drop_text, drop_prompt=drop_prompt,
|
308 |
+
style_prompt=style_prompt, style_prompt_lens=style_prompt_lens, grad_ckpt=grad_ckpt, start_time=start_time
|
309 |
+
)
|
310 |
+
|
311 |
+
# flow matching loss
|
312 |
+
loss = F.mse_loss(pred, flow, reduction="none")
|
313 |
+
loss = loss[rand_span_mask]
|
314 |
+
|
315 |
+
return loss.mean(), cond, pred
|
diffrhythm/model/dit.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
ein notation:
|
3 |
+
b - batch
|
4 |
+
n - sequence
|
5 |
+
nt - text sequence
|
6 |
+
nw - raw wave length
|
7 |
+
d - dimension
|
8 |
+
"""
|
9 |
+
|
10 |
+
from __future__ import annotations
|
11 |
+
|
12 |
+
import torch
|
13 |
+
from torch import nn
|
14 |
+
import torch
|
15 |
+
import torch.nn.functional as F
|
16 |
+
|
17 |
+
from x_transformers.x_transformers import RotaryEmbedding
|
18 |
+
from transformers.models.llama.modeling_llama import LlamaDecoderLayer
|
19 |
+
from transformers.models.llama import LlamaConfig
|
20 |
+
from torch.utils.checkpoint import checkpoint
|
21 |
+
|
22 |
+
from diffrhythm.model.modules import (
|
23 |
+
TimestepEmbedding,
|
24 |
+
ConvNeXtV2Block,
|
25 |
+
ConvPositionEmbedding,
|
26 |
+
DiTBlock,
|
27 |
+
AdaLayerNormZero_Final,
|
28 |
+
precompute_freqs_cis,
|
29 |
+
get_pos_embed_indices,
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
# Text embedding
|
34 |
+
|
35 |
+
|
36 |
+
class TextEmbedding(nn.Module):
|
37 |
+
def __init__(self, text_num_embeds, text_dim, conv_layers=0, conv_mult=2):
|
38 |
+
super().__init__()
|
39 |
+
self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim) # use 0 as filler token
|
40 |
+
|
41 |
+
if conv_layers > 0:
|
42 |
+
self.extra_modeling = True
|
43 |
+
self.precompute_max_pos = 4096 # ~44s of 24khz audio
|
44 |
+
self.register_buffer("freqs_cis", precompute_freqs_cis(text_dim, self.precompute_max_pos), persistent=False)
|
45 |
+
self.text_blocks = nn.Sequential(
|
46 |
+
*[ConvNeXtV2Block(text_dim, text_dim * conv_mult) for _ in range(conv_layers)]
|
47 |
+
)
|
48 |
+
else:
|
49 |
+
self.extra_modeling = False
|
50 |
+
|
51 |
+
def forward(self, text: int["b nt"], seq_len, drop_text=False): # noqa: F722
|
52 |
+
#text = text + 1 # use 0 as filler token. preprocess of batch pad -1, see list_str_to_idx()
|
53 |
+
#text = text[:, :seq_len] # curtail if character tokens are more than the mel spec tokens
|
54 |
+
batch, text_len = text.shape[0], text.shape[1]
|
55 |
+
#text = F.pad(text, (0, seq_len - text_len), value=0)
|
56 |
+
|
57 |
+
if drop_text: # cfg for text
|
58 |
+
text = torch.zeros_like(text)
|
59 |
+
|
60 |
+
text = self.text_embed(text) # b n -> b n d
|
61 |
+
|
62 |
+
# possible extra modeling
|
63 |
+
if self.extra_modeling:
|
64 |
+
# sinus pos emb
|
65 |
+
batch_start = torch.zeros((batch,), dtype=torch.long)
|
66 |
+
pos_idx = get_pos_embed_indices(batch_start, seq_len, max_pos=self.precompute_max_pos)
|
67 |
+
text_pos_embed = self.freqs_cis[pos_idx]
|
68 |
+
text = text + text_pos_embed
|
69 |
+
|
70 |
+
# convnextv2 blocks
|
71 |
+
text = self.text_blocks(text)
|
72 |
+
|
73 |
+
return text
|
74 |
+
|
75 |
+
|
76 |
+
# noised input audio and context mixing embedding
|
77 |
+
|
78 |
+
|
79 |
+
class InputEmbedding(nn.Module):
|
80 |
+
def __init__(self, mel_dim, text_dim, out_dim, cond_dim):
|
81 |
+
super().__init__()
|
82 |
+
self.proj = nn.Linear(mel_dim * 2 + text_dim + cond_dim * 2, out_dim)
|
83 |
+
self.conv_pos_embed = ConvPositionEmbedding(dim=out_dim)
|
84 |
+
|
85 |
+
def forward(self, x: float["b n d"], cond: float["b n d"], text_embed: float["b n d"], style_emb, time_emb, drop_audio_cond=False): # noqa: F722
|
86 |
+
if drop_audio_cond: # cfg for cond audio
|
87 |
+
cond = torch.zeros_like(cond)
|
88 |
+
|
89 |
+
style_emb = style_emb.unsqueeze(1).repeat(1, x.shape[1], 1)
|
90 |
+
time_emb = time_emb.unsqueeze(1).repeat(1, x.shape[1], 1)
|
91 |
+
# print(x.shape, cond.shape, text_embed.shape, style_emb.shape, time_emb.shape)
|
92 |
+
x = self.proj(torch.cat((x, cond, text_embed, style_emb, time_emb), dim=-1))
|
93 |
+
x = self.conv_pos_embed(x) + x
|
94 |
+
return x
|
95 |
+
|
96 |
+
|
97 |
+
# Transformer backbone using DiT blocks
|
98 |
+
|
99 |
+
|
100 |
+
class DiT(nn.Module):
|
101 |
+
def __init__(
|
102 |
+
self,
|
103 |
+
*,
|
104 |
+
dim,
|
105 |
+
depth=8,
|
106 |
+
heads=8,
|
107 |
+
dim_head=64,
|
108 |
+
dropout=0.1,
|
109 |
+
ff_mult=4,
|
110 |
+
mel_dim=100,
|
111 |
+
text_num_embeds=256,
|
112 |
+
text_dim=None,
|
113 |
+
conv_layers=0,
|
114 |
+
long_skip_connection=False,
|
115 |
+
use_style_prompt=False
|
116 |
+
):
|
117 |
+
super().__init__()
|
118 |
+
|
119 |
+
cond_dim = 512
|
120 |
+
self.time_embed = TimestepEmbedding(cond_dim)
|
121 |
+
self.start_time_embed = TimestepEmbedding(cond_dim)
|
122 |
+
if text_dim is None:
|
123 |
+
text_dim = mel_dim
|
124 |
+
self.text_embed = TextEmbedding(text_num_embeds, text_dim, conv_layers=conv_layers)
|
125 |
+
self.input_embed = InputEmbedding(mel_dim, text_dim, dim, cond_dim=cond_dim)
|
126 |
+
|
127 |
+
#self.rotary_embed = RotaryEmbedding(dim_head)
|
128 |
+
|
129 |
+
self.dim = dim
|
130 |
+
self.depth = depth
|
131 |
+
|
132 |
+
#self.transformer_blocks = nn.ModuleList(
|
133 |
+
# [DiTBlock(dim=dim, heads=heads, dim_head=dim_head, ff_mult=ff_mult, dropout=dropout, use_style_prompt=use_style_prompt) for _ in range(depth)]
|
134 |
+
#)
|
135 |
+
llama_config = LlamaConfig(hidden_size=dim, intermediate_size=dim * ff_mult, hidden_act='silu')
|
136 |
+
llama_config._attn_implementation = 'sdpa'
|
137 |
+
self.transformer_blocks = nn.ModuleList(
|
138 |
+
[LlamaDecoderLayer(llama_config, layer_idx=i) for i in range(depth)]
|
139 |
+
)
|
140 |
+
self.long_skip_connection = nn.Linear(dim * 2, dim, bias=False) if long_skip_connection else None
|
141 |
+
|
142 |
+
self.text_fusion_linears = nn.ModuleList(
|
143 |
+
[
|
144 |
+
nn.Sequential(
|
145 |
+
nn.Linear(cond_dim, dim),
|
146 |
+
nn.SiLU()
|
147 |
+
) for i in range(depth // 2)
|
148 |
+
]
|
149 |
+
)
|
150 |
+
for layer in self.text_fusion_linears:
|
151 |
+
for p in layer.parameters():
|
152 |
+
p.detach().zero_()
|
153 |
+
|
154 |
+
self.norm_out = AdaLayerNormZero_Final(dim, cond_dim) # final modulation
|
155 |
+
self.proj_out = nn.Linear(dim, mel_dim)
|
156 |
+
|
157 |
+
# if use_style_prompt:
|
158 |
+
# self.prompt_rnn = nn.LSTM(64, cond_dim, 1, batch_first=True)
|
159 |
+
|
160 |
+
|
161 |
+
def forward(
|
162 |
+
self,
|
163 |
+
x: float["b n d"], # nosied input audio # noqa: F722
|
164 |
+
cond: float["b n d"], # masked cond audio # noqa: F722
|
165 |
+
text: int["b nt"], # text # noqa: F722
|
166 |
+
time: float["b"] | float[""], # time step # noqa: F821 F722
|
167 |
+
drop_audio_cond, # cfg for cond audio
|
168 |
+
drop_text, # cfg for text
|
169 |
+
drop_prompt=False,
|
170 |
+
style_prompt=None, # [b d t]
|
171 |
+
style_prompt_lens=None,
|
172 |
+
mask: bool["b n"] | None = None, # noqa: F722
|
173 |
+
grad_ckpt=False,
|
174 |
+
start_time=None,
|
175 |
+
):
|
176 |
+
batch, seq_len = x.shape[0], x.shape[1]
|
177 |
+
if time.ndim == 0:
|
178 |
+
time = time.repeat(batch)
|
179 |
+
|
180 |
+
# t: conditioning time, c: context (text + masked cond audio), x: noised input audio
|
181 |
+
t = self.time_embed(time)
|
182 |
+
s_t = self.start_time_embed(start_time)
|
183 |
+
c = t + s_t
|
184 |
+
text_embed = self.text_embed(text, seq_len, drop_text=drop_text)
|
185 |
+
|
186 |
+
# import pdb; pdb.set_trace()
|
187 |
+
if drop_prompt:
|
188 |
+
style_prompt = torch.zeros_like(style_prompt)
|
189 |
+
# if self.training:
|
190 |
+
# packed_style_prompt = torch.nn.utils.rnn.pack_padded_sequence(style_prompt.transpose(1, 2), style_prompt_lens.cpu(), batch_first=True, enforce_sorted=False)
|
191 |
+
# else:
|
192 |
+
# packed_style_prompt = style_prompt.transpose(1, 2)
|
193 |
+
#print(packed_style_prompt.shape)
|
194 |
+
# _, style_emb = self.prompt_rnn.forward(packed_style_prompt)
|
195 |
+
# _, (h_n, c_n) = self.prompt_rnn.forward(packed_style_prompt)
|
196 |
+
# style_emb = h_n.squeeze(0) # 1, B, dim -> B, dim
|
197 |
+
|
198 |
+
style_emb = style_prompt # [b, 512]
|
199 |
+
|
200 |
+
x = self.input_embed(x, cond, text_embed, style_emb, c, drop_audio_cond=drop_audio_cond)
|
201 |
+
|
202 |
+
if self.long_skip_connection is not None:
|
203 |
+
residual = x
|
204 |
+
|
205 |
+
pos_ids = torch.arange(x.shape[1], device=x.device)
|
206 |
+
pos_ids = pos_ids.unsqueeze(0).repeat(x.shape[0], 1)
|
207 |
+
for i, block in enumerate(self.transformer_blocks):
|
208 |
+
if not grad_ckpt:
|
209 |
+
x, *_ = block(x, position_ids=pos_ids)
|
210 |
+
else:
|
211 |
+
x, *_ = checkpoint(block, x, position_ids=pos_ids, use_reentrant=False)
|
212 |
+
if i < self.depth // 2:
|
213 |
+
x = x + self.text_fusion_linears[i](text_embed)
|
214 |
+
|
215 |
+
if self.long_skip_connection is not None:
|
216 |
+
x = self.long_skip_connection(torch.cat((x, residual), dim=-1))
|
217 |
+
|
218 |
+
x = self.norm_out(x, c)
|
219 |
+
output = self.proj_out(x)
|
220 |
+
|
221 |
+
return output
|
diffrhythm/model/modules.py
ADDED
@@ -0,0 +1,611 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
ein notation:
|
3 |
+
b - batch
|
4 |
+
n - sequence
|
5 |
+
nt - text sequence
|
6 |
+
nw - raw wave length
|
7 |
+
d - dimension
|
8 |
+
"""
|
9 |
+
|
10 |
+
from __future__ import annotations
|
11 |
+
from typing import Optional
|
12 |
+
import math
|
13 |
+
|
14 |
+
import torch
|
15 |
+
from torch import nn
|
16 |
+
import torch
|
17 |
+
import torch.nn.functional as F
|
18 |
+
import torchaudio
|
19 |
+
|
20 |
+
from x_transformers.x_transformers import apply_rotary_pos_emb
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
class FiLMLayer(nn.Module):
|
25 |
+
"""
|
26 |
+
Feature-wise Linear Modulation (FiLM) layer
|
27 |
+
Reference: https://arxiv.org/abs/1709.07871
|
28 |
+
"""
|
29 |
+
def __init__(self, in_channels, cond_channels):
|
30 |
+
|
31 |
+
super(FiLMLayer, self).__init__()
|
32 |
+
self.in_channels = in_channels
|
33 |
+
self.film = nn.Conv1d(cond_channels, in_channels * 2, 1)
|
34 |
+
|
35 |
+
def forward(self, x, c):
|
36 |
+
gamma, beta = torch.chunk(self.film(c.unsqueeze(2)), chunks=2, dim=1)
|
37 |
+
gamma = gamma.transpose(1, 2)
|
38 |
+
beta = beta.transpose(1, 2)
|
39 |
+
# print(gamma.shape, beta.shape)
|
40 |
+
return gamma * x + beta
|
41 |
+
|
42 |
+
# raw wav to mel spec
|
43 |
+
|
44 |
+
|
45 |
+
class MelSpec(nn.Module):
|
46 |
+
def __init__(
|
47 |
+
self,
|
48 |
+
filter_length=1024,
|
49 |
+
hop_length=256,
|
50 |
+
win_length=1024,
|
51 |
+
n_mel_channels=100,
|
52 |
+
target_sample_rate=24_000,
|
53 |
+
normalize=False,
|
54 |
+
power=1,
|
55 |
+
norm=None,
|
56 |
+
center=True,
|
57 |
+
):
|
58 |
+
super().__init__()
|
59 |
+
self.n_mel_channels = n_mel_channels
|
60 |
+
|
61 |
+
self.mel_stft = torchaudio.transforms.MelSpectrogram(
|
62 |
+
sample_rate=target_sample_rate,
|
63 |
+
n_fft=filter_length,
|
64 |
+
win_length=win_length,
|
65 |
+
hop_length=hop_length,
|
66 |
+
n_mels=n_mel_channels,
|
67 |
+
power=power,
|
68 |
+
center=center,
|
69 |
+
normalized=normalize,
|
70 |
+
norm=norm,
|
71 |
+
)
|
72 |
+
|
73 |
+
self.register_buffer("dummy", torch.tensor(0), persistent=False)
|
74 |
+
|
75 |
+
def forward(self, inp):
|
76 |
+
if len(inp.shape) == 3:
|
77 |
+
inp = inp.squeeze(1) # 'b 1 nw -> b nw'
|
78 |
+
|
79 |
+
assert len(inp.shape) == 2
|
80 |
+
|
81 |
+
if self.dummy.device != inp.device:
|
82 |
+
self.to(inp.device)
|
83 |
+
|
84 |
+
mel = self.mel_stft(inp)
|
85 |
+
mel = mel.clamp(min=1e-5).log()
|
86 |
+
return mel
|
87 |
+
|
88 |
+
|
89 |
+
# sinusoidal position embedding
|
90 |
+
|
91 |
+
|
92 |
+
class SinusPositionEmbedding(nn.Module):
|
93 |
+
def __init__(self, dim):
|
94 |
+
super().__init__()
|
95 |
+
self.dim = dim
|
96 |
+
|
97 |
+
def forward(self, x, scale=1000):
|
98 |
+
device = x.device
|
99 |
+
half_dim = self.dim // 2
|
100 |
+
emb = math.log(10000) / (half_dim - 1)
|
101 |
+
emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb)
|
102 |
+
emb = scale * x.unsqueeze(1) * emb.unsqueeze(0)
|
103 |
+
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
|
104 |
+
return emb
|
105 |
+
|
106 |
+
|
107 |
+
# convolutional position embedding
|
108 |
+
|
109 |
+
|
110 |
+
class ConvPositionEmbedding(nn.Module):
|
111 |
+
def __init__(self, dim, kernel_size=31, groups=16):
|
112 |
+
super().__init__()
|
113 |
+
assert kernel_size % 2 != 0
|
114 |
+
self.conv1d = nn.Sequential(
|
115 |
+
nn.Conv1d(dim, dim, kernel_size, groups=groups, padding=kernel_size // 2),
|
116 |
+
nn.Mish(),
|
117 |
+
nn.Conv1d(dim, dim, kernel_size, groups=groups, padding=kernel_size // 2),
|
118 |
+
nn.Mish(),
|
119 |
+
)
|
120 |
+
|
121 |
+
def forward(self, x: float["b n d"], mask: bool["b n"] | None = None): # noqa: F722
|
122 |
+
if mask is not None:
|
123 |
+
mask = mask[..., None]
|
124 |
+
x = x.masked_fill(~mask, 0.0)
|
125 |
+
|
126 |
+
x = x.permute(0, 2, 1)
|
127 |
+
x = self.conv1d(x)
|
128 |
+
out = x.permute(0, 2, 1)
|
129 |
+
|
130 |
+
if mask is not None:
|
131 |
+
out = out.masked_fill(~mask, 0.0)
|
132 |
+
|
133 |
+
return out
|
134 |
+
|
135 |
+
|
136 |
+
# rotary positional embedding related
|
137 |
+
|
138 |
+
|
139 |
+
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, theta_rescale_factor=1.0):
|
140 |
+
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
|
141 |
+
# has some connection to NTK literature
|
142 |
+
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
|
143 |
+
# https://github.com/lucidrains/rotary-embedding-torch/blob/main/rotary_embedding_torch/rotary_embedding_torch.py
|
144 |
+
theta *= theta_rescale_factor ** (dim / (dim - 2))
|
145 |
+
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
146 |
+
t = torch.arange(end, device=freqs.device) # type: ignore
|
147 |
+
freqs = torch.outer(t, freqs).float() # type: ignore
|
148 |
+
freqs_cos = torch.cos(freqs) # real part
|
149 |
+
freqs_sin = torch.sin(freqs) # imaginary part
|
150 |
+
return torch.cat([freqs_cos, freqs_sin], dim=-1)
|
151 |
+
|
152 |
+
|
153 |
+
def get_pos_embed_indices(start, length, max_pos, scale=1.0):
|
154 |
+
# length = length if isinstance(length, int) else length.max()
|
155 |
+
scale = scale * torch.ones_like(start, dtype=torch.float32) # in case scale is a scalar
|
156 |
+
pos = (
|
157 |
+
start.unsqueeze(1)
|
158 |
+
+ (torch.arange(length, device=start.device, dtype=torch.float32).unsqueeze(0) * scale.unsqueeze(1)).long()
|
159 |
+
)
|
160 |
+
# avoid extra long error.
|
161 |
+
pos = torch.where(pos < max_pos, pos, max_pos - 1)
|
162 |
+
return pos
|
163 |
+
|
164 |
+
|
165 |
+
# Global Response Normalization layer (Instance Normalization ?)
|
166 |
+
|
167 |
+
|
168 |
+
class GRN(nn.Module):
|
169 |
+
def __init__(self, dim):
|
170 |
+
super().__init__()
|
171 |
+
self.gamma = nn.Parameter(torch.zeros(1, 1, dim))
|
172 |
+
self.beta = nn.Parameter(torch.zeros(1, 1, dim))
|
173 |
+
|
174 |
+
def forward(self, x):
|
175 |
+
Gx = torch.norm(x, p=2, dim=1, keepdim=True)
|
176 |
+
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
|
177 |
+
return self.gamma * (x * Nx) + self.beta + x
|
178 |
+
|
179 |
+
|
180 |
+
# ConvNeXt-V2 Block https://github.com/facebookresearch/ConvNeXt-V2/blob/main/models/convnextv2.py
|
181 |
+
# ref: https://github.com/bfs18/e2_tts/blob/main/rfwave/modules.py#L108
|
182 |
+
|
183 |
+
|
184 |
+
class ConvNeXtV2Block(nn.Module):
|
185 |
+
def __init__(
|
186 |
+
self,
|
187 |
+
dim: int,
|
188 |
+
intermediate_dim: int,
|
189 |
+
dilation: int = 1,
|
190 |
+
):
|
191 |
+
super().__init__()
|
192 |
+
padding = (dilation * (7 - 1)) // 2
|
193 |
+
self.dwconv = nn.Conv1d(
|
194 |
+
dim, dim, kernel_size=7, padding=padding, groups=dim, dilation=dilation
|
195 |
+
) # depthwise conv
|
196 |
+
self.norm = nn.LayerNorm(dim, eps=1e-6)
|
197 |
+
self.pwconv1 = nn.Linear(dim, intermediate_dim) # pointwise/1x1 convs, implemented with linear layers
|
198 |
+
self.act = nn.GELU()
|
199 |
+
self.grn = GRN(intermediate_dim)
|
200 |
+
self.pwconv2 = nn.Linear(intermediate_dim, dim)
|
201 |
+
|
202 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
203 |
+
residual = x
|
204 |
+
x = x.transpose(1, 2) # b n d -> b d n
|
205 |
+
x = self.dwconv(x)
|
206 |
+
x = x.transpose(1, 2) # b d n -> b n d
|
207 |
+
x = self.norm(x)
|
208 |
+
x = self.pwconv1(x)
|
209 |
+
x = self.act(x)
|
210 |
+
x = self.grn(x)
|
211 |
+
x = self.pwconv2(x)
|
212 |
+
return residual + x
|
213 |
+
|
214 |
+
|
215 |
+
# AdaLayerNormZero
|
216 |
+
# return with modulated x for attn input, and params for later mlp modulation
|
217 |
+
|
218 |
+
|
219 |
+
class AdaLayerNormZero(nn.Module):
|
220 |
+
def __init__(self, dim):
|
221 |
+
super().__init__()
|
222 |
+
|
223 |
+
self.silu = nn.SiLU()
|
224 |
+
self.linear = nn.Linear(dim, dim * 6)
|
225 |
+
|
226 |
+
self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
227 |
+
|
228 |
+
def forward(self, x, emb=None):
|
229 |
+
emb = self.linear(self.silu(emb))
|
230 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = torch.chunk(emb, 6, dim=1)
|
231 |
+
|
232 |
+
x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
|
233 |
+
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
|
234 |
+
|
235 |
+
|
236 |
+
# AdaLayerNormZero for final layer
|
237 |
+
# return only with modulated x for attn input, cuz no more mlp modulation
|
238 |
+
|
239 |
+
|
240 |
+
class AdaLayerNormZero_Final(nn.Module):
|
241 |
+
def __init__(self, dim, cond_dim):
|
242 |
+
super().__init__()
|
243 |
+
|
244 |
+
self.silu = nn.SiLU()
|
245 |
+
self.linear = nn.Linear(cond_dim, dim * 2)
|
246 |
+
|
247 |
+
self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
248 |
+
|
249 |
+
def forward(self, x, emb):
|
250 |
+
emb = self.linear(self.silu(emb))
|
251 |
+
scale, shift = torch.chunk(emb, 2, dim=1)
|
252 |
+
|
253 |
+
x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
|
254 |
+
return x
|
255 |
+
|
256 |
+
|
257 |
+
# FeedForward
|
258 |
+
|
259 |
+
|
260 |
+
class FeedForward(nn.Module):
|
261 |
+
def __init__(self, dim, dim_out=None, mult=4, dropout=0.0, approximate: str = "none"):
|
262 |
+
super().__init__()
|
263 |
+
inner_dim = int(dim * mult)
|
264 |
+
dim_out = dim_out if dim_out is not None else dim
|
265 |
+
|
266 |
+
activation = nn.GELU(approximate=approximate)
|
267 |
+
#activation = nn.SiLU()
|
268 |
+
project_in = nn.Sequential(nn.Linear(dim, inner_dim), activation)
|
269 |
+
self.ff = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out))
|
270 |
+
|
271 |
+
def forward(self, x):
|
272 |
+
return self.ff(x)
|
273 |
+
|
274 |
+
|
275 |
+
# Attention with possible joint part
|
276 |
+
# modified from diffusers/src/diffusers/models/attention_processor.py
|
277 |
+
|
278 |
+
|
279 |
+
class Attention(nn.Module):
|
280 |
+
def __init__(
|
281 |
+
self,
|
282 |
+
processor: JointAttnProcessor | AttnProcessor,
|
283 |
+
dim: int,
|
284 |
+
heads: int = 8,
|
285 |
+
dim_head: int = 64,
|
286 |
+
dropout: float = 0.0,
|
287 |
+
context_dim: Optional[int] = None, # if not None -> joint attention
|
288 |
+
context_pre_only=None,
|
289 |
+
):
|
290 |
+
super().__init__()
|
291 |
+
|
292 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
293 |
+
raise ImportError("Attention equires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
294 |
+
|
295 |
+
self.processor = processor
|
296 |
+
|
297 |
+
self.dim = dim
|
298 |
+
self.heads = heads
|
299 |
+
self.inner_dim = dim_head * heads
|
300 |
+
self.dropout = dropout
|
301 |
+
|
302 |
+
self.context_dim = context_dim
|
303 |
+
self.context_pre_only = context_pre_only
|
304 |
+
|
305 |
+
self.to_q = nn.Linear(dim, self.inner_dim)
|
306 |
+
self.to_k = nn.Linear(dim, self.inner_dim)
|
307 |
+
self.to_v = nn.Linear(dim, self.inner_dim)
|
308 |
+
|
309 |
+
if self.context_dim is not None:
|
310 |
+
self.to_k_c = nn.Linear(context_dim, self.inner_dim)
|
311 |
+
self.to_v_c = nn.Linear(context_dim, self.inner_dim)
|
312 |
+
if self.context_pre_only is not None:
|
313 |
+
self.to_q_c = nn.Linear(context_dim, self.inner_dim)
|
314 |
+
|
315 |
+
self.to_out = nn.ModuleList([])
|
316 |
+
self.to_out.append(nn.Linear(self.inner_dim, dim))
|
317 |
+
self.to_out.append(nn.Dropout(dropout))
|
318 |
+
|
319 |
+
if self.context_pre_only is not None and not self.context_pre_only:
|
320 |
+
self.to_out_c = nn.Linear(self.inner_dim, dim)
|
321 |
+
|
322 |
+
def forward(
|
323 |
+
self,
|
324 |
+
x: float["b n d"], # noised input x # noqa: F722
|
325 |
+
c: float["b n d"] = None, # context c # noqa: F722
|
326 |
+
mask: bool["b n"] | None = None, # noqa: F722
|
327 |
+
rope=None, # rotary position embedding for x
|
328 |
+
c_rope=None, # rotary position embedding for c
|
329 |
+
) -> torch.Tensor:
|
330 |
+
if c is not None:
|
331 |
+
return self.processor(self, x, c=c, mask=mask, rope=rope, c_rope=c_rope)
|
332 |
+
else:
|
333 |
+
return self.processor(self, x, mask=mask, rope=rope)
|
334 |
+
|
335 |
+
|
336 |
+
# Attention processor
|
337 |
+
|
338 |
+
|
339 |
+
class AttnProcessor:
|
340 |
+
def __init__(self):
|
341 |
+
pass
|
342 |
+
|
343 |
+
def __call__(
|
344 |
+
self,
|
345 |
+
attn: Attention,
|
346 |
+
x: float["b n d"], # noised input x # noqa: F722
|
347 |
+
mask: bool["b n"] | None = None, # noqa: F722
|
348 |
+
rope=None, # rotary position embedding
|
349 |
+
) -> torch.FloatTensor:
|
350 |
+
batch_size = x.shape[0]
|
351 |
+
|
352 |
+
# `sample` projections.
|
353 |
+
query = attn.to_q(x)
|
354 |
+
key = attn.to_k(x)
|
355 |
+
value = attn.to_v(x)
|
356 |
+
|
357 |
+
# apply rotary position embedding
|
358 |
+
if rope is not None:
|
359 |
+
freqs, xpos_scale = rope
|
360 |
+
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale**-1.0) if xpos_scale is not None else (1.0, 1.0)
|
361 |
+
|
362 |
+
query = apply_rotary_pos_emb(query, freqs, q_xpos_scale)
|
363 |
+
key = apply_rotary_pos_emb(key, freqs, k_xpos_scale)
|
364 |
+
|
365 |
+
# attention
|
366 |
+
inner_dim = key.shape[-1]
|
367 |
+
head_dim = inner_dim // attn.heads
|
368 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
369 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
370 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
371 |
+
|
372 |
+
# mask. e.g. inference got a batch with different target durations, mask out the padding
|
373 |
+
if mask is not None:
|
374 |
+
attn_mask = mask
|
375 |
+
attn_mask = attn_mask.unsqueeze(1).unsqueeze(1) # 'b n -> b 1 1 n'
|
376 |
+
attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2])
|
377 |
+
else:
|
378 |
+
attn_mask = None
|
379 |
+
|
380 |
+
x = F.scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=0.0, is_causal=False)
|
381 |
+
x = x.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
382 |
+
x = x.to(query.dtype)
|
383 |
+
|
384 |
+
# linear proj
|
385 |
+
x = attn.to_out[0](x)
|
386 |
+
# dropout
|
387 |
+
x = attn.to_out[1](x)
|
388 |
+
|
389 |
+
if mask is not None:
|
390 |
+
mask = mask.unsqueeze(-1)
|
391 |
+
x = x.masked_fill(~mask, 0.0)
|
392 |
+
|
393 |
+
return x
|
394 |
+
|
395 |
+
|
396 |
+
# Joint Attention processor for MM-DiT
|
397 |
+
# modified from diffusers/src/diffusers/models/attention_processor.py
|
398 |
+
|
399 |
+
|
400 |
+
class JointAttnProcessor:
|
401 |
+
def __init__(self):
|
402 |
+
pass
|
403 |
+
|
404 |
+
def __call__(
|
405 |
+
self,
|
406 |
+
attn: Attention,
|
407 |
+
x: float["b n d"], # noised input x # noqa: F722
|
408 |
+
c: float["b nt d"] = None, # context c, here text # noqa: F722
|
409 |
+
mask: bool["b n"] | None = None, # noqa: F722
|
410 |
+
rope=None, # rotary position embedding for x
|
411 |
+
c_rope=None, # rotary position embedding for c
|
412 |
+
) -> torch.FloatTensor:
|
413 |
+
residual = x
|
414 |
+
|
415 |
+
batch_size = c.shape[0]
|
416 |
+
|
417 |
+
# `sample` projections.
|
418 |
+
query = attn.to_q(x)
|
419 |
+
key = attn.to_k(x)
|
420 |
+
value = attn.to_v(x)
|
421 |
+
|
422 |
+
# `context` projections.
|
423 |
+
c_query = attn.to_q_c(c)
|
424 |
+
c_key = attn.to_k_c(c)
|
425 |
+
c_value = attn.to_v_c(c)
|
426 |
+
|
427 |
+
# apply rope for context and noised input independently
|
428 |
+
if rope is not None:
|
429 |
+
freqs, xpos_scale = rope
|
430 |
+
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale**-1.0) if xpos_scale is not None else (1.0, 1.0)
|
431 |
+
query = apply_rotary_pos_emb(query, freqs, q_xpos_scale)
|
432 |
+
key = apply_rotary_pos_emb(key, freqs, k_xpos_scale)
|
433 |
+
if c_rope is not None:
|
434 |
+
freqs, xpos_scale = c_rope
|
435 |
+
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale**-1.0) if xpos_scale is not None else (1.0, 1.0)
|
436 |
+
c_query = apply_rotary_pos_emb(c_query, freqs, q_xpos_scale)
|
437 |
+
c_key = apply_rotary_pos_emb(c_key, freqs, k_xpos_scale)
|
438 |
+
|
439 |
+
# attention
|
440 |
+
query = torch.cat([query, c_query], dim=1)
|
441 |
+
key = torch.cat([key, c_key], dim=1)
|
442 |
+
value = torch.cat([value, c_value], dim=1)
|
443 |
+
|
444 |
+
inner_dim = key.shape[-1]
|
445 |
+
head_dim = inner_dim // attn.heads
|
446 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
447 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
448 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
449 |
+
|
450 |
+
# mask. e.g. inference got a batch with different target durations, mask out the padding
|
451 |
+
if mask is not None:
|
452 |
+
attn_mask = F.pad(mask, (0, c.shape[1]), value=True) # no mask for c (text)
|
453 |
+
attn_mask = attn_mask.unsqueeze(1).unsqueeze(1) # 'b n -> b 1 1 n'
|
454 |
+
attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2])
|
455 |
+
else:
|
456 |
+
attn_mask = None
|
457 |
+
|
458 |
+
x = F.scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=0.0, is_causal=False)
|
459 |
+
x = x.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
460 |
+
x = x.to(query.dtype)
|
461 |
+
|
462 |
+
# Split the attention outputs.
|
463 |
+
x, c = (
|
464 |
+
x[:, : residual.shape[1]],
|
465 |
+
x[:, residual.shape[1] :],
|
466 |
+
)
|
467 |
+
|
468 |
+
# linear proj
|
469 |
+
x = attn.to_out[0](x)
|
470 |
+
# dropout
|
471 |
+
x = attn.to_out[1](x)
|
472 |
+
if not attn.context_pre_only:
|
473 |
+
c = attn.to_out_c(c)
|
474 |
+
|
475 |
+
if mask is not None:
|
476 |
+
mask = mask.unsqueeze(-1)
|
477 |
+
x = x.masked_fill(~mask, 0.0)
|
478 |
+
# c = c.masked_fill(~mask, 0.) # no mask for c (text)
|
479 |
+
|
480 |
+
return x, c
|
481 |
+
|
482 |
+
|
483 |
+
# DiT Block
|
484 |
+
|
485 |
+
|
486 |
+
class DiTBlock(nn.Module):
|
487 |
+
def __init__(self, dim, heads, dim_head, ff_mult=4, dropout=0.1, use_style_prompt=False):
|
488 |
+
super().__init__()
|
489 |
+
|
490 |
+
self.attn_norm = AdaLayerNormZero(dim)
|
491 |
+
self.attn = Attention(
|
492 |
+
processor=AttnProcessor(),
|
493 |
+
dim=dim,
|
494 |
+
heads=heads,
|
495 |
+
dim_head=dim_head,
|
496 |
+
dropout=dropout,
|
497 |
+
)
|
498 |
+
|
499 |
+
self.ff_norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
500 |
+
self.ff = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh")
|
501 |
+
|
502 |
+
self.use_style_prompt = use_style_prompt
|
503 |
+
if use_style_prompt:
|
504 |
+
#self.film = FiLMLayer(dim, dim)
|
505 |
+
self.prompt_norm = AdaLayerNormZero_Final(dim)
|
506 |
+
|
507 |
+
def forward(self, x, t, c=None, mask=None, rope=None): # x: noised input, t: time embedding
|
508 |
+
if c is not None and self.use_style_prompt:
|
509 |
+
#x = self.film(x, c)
|
510 |
+
x = self.prompt_norm(x, c)
|
511 |
+
|
512 |
+
# pre-norm & modulation for attention input
|
513 |
+
norm, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.attn_norm(x, emb=t)
|
514 |
+
|
515 |
+
# attention
|
516 |
+
attn_output = self.attn(x=norm, mask=mask, rope=rope)
|
517 |
+
|
518 |
+
# process attention output for input x
|
519 |
+
x = x + gate_msa.unsqueeze(1) * attn_output
|
520 |
+
|
521 |
+
norm = self.ff_norm(x) * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
522 |
+
ff_output = self.ff(norm)
|
523 |
+
x = x + gate_mlp.unsqueeze(1) * ff_output
|
524 |
+
|
525 |
+
return x
|
526 |
+
|
527 |
+
|
528 |
+
# MMDiT Block https://arxiv.org/abs/2403.03206
|
529 |
+
|
530 |
+
|
531 |
+
class MMDiTBlock(nn.Module):
|
532 |
+
r"""
|
533 |
+
modified from diffusers/src/diffusers/models/attention.py
|
534 |
+
|
535 |
+
notes.
|
536 |
+
_c: context related. text, cond, etc. (left part in sd3 fig2.b)
|
537 |
+
_x: noised input related. (right part)
|
538 |
+
context_pre_only: last layer only do prenorm + modulation cuz no more ffn
|
539 |
+
"""
|
540 |
+
|
541 |
+
def __init__(self, dim, heads, dim_head, ff_mult=4, dropout=0.1, context_pre_only=False):
|
542 |
+
super().__init__()
|
543 |
+
|
544 |
+
self.context_pre_only = context_pre_only
|
545 |
+
|
546 |
+
self.attn_norm_c = AdaLayerNormZero_Final(dim) if context_pre_only else AdaLayerNormZero(dim)
|
547 |
+
self.attn_norm_x = AdaLayerNormZero(dim)
|
548 |
+
self.attn = Attention(
|
549 |
+
processor=JointAttnProcessor(),
|
550 |
+
dim=dim,
|
551 |
+
heads=heads,
|
552 |
+
dim_head=dim_head,
|
553 |
+
dropout=dropout,
|
554 |
+
context_dim=dim,
|
555 |
+
context_pre_only=context_pre_only,
|
556 |
+
)
|
557 |
+
|
558 |
+
if not context_pre_only:
|
559 |
+
self.ff_norm_c = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
560 |
+
self.ff_c = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh")
|
561 |
+
else:
|
562 |
+
self.ff_norm_c = None
|
563 |
+
self.ff_c = None
|
564 |
+
self.ff_norm_x = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
565 |
+
self.ff_x = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh")
|
566 |
+
|
567 |
+
def forward(self, x, c, t, mask=None, rope=None, c_rope=None): # x: noised input, c: context, t: time embedding
|
568 |
+
# pre-norm & modulation for attention input
|
569 |
+
if self.context_pre_only:
|
570 |
+
norm_c = self.attn_norm_c(c, t)
|
571 |
+
else:
|
572 |
+
norm_c, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.attn_norm_c(c, emb=t)
|
573 |
+
norm_x, x_gate_msa, x_shift_mlp, x_scale_mlp, x_gate_mlp = self.attn_norm_x(x, emb=t)
|
574 |
+
|
575 |
+
# attention
|
576 |
+
x_attn_output, c_attn_output = self.attn(x=norm_x, c=norm_c, mask=mask, rope=rope, c_rope=c_rope)
|
577 |
+
|
578 |
+
# process attention output for context c
|
579 |
+
if self.context_pre_only:
|
580 |
+
c = None
|
581 |
+
else: # if not last layer
|
582 |
+
c = c + c_gate_msa.unsqueeze(1) * c_attn_output
|
583 |
+
|
584 |
+
norm_c = self.ff_norm_c(c) * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
585 |
+
c_ff_output = self.ff_c(norm_c)
|
586 |
+
c = c + c_gate_mlp.unsqueeze(1) * c_ff_output
|
587 |
+
|
588 |
+
# process attention output for input x
|
589 |
+
x = x + x_gate_msa.unsqueeze(1) * x_attn_output
|
590 |
+
|
591 |
+
norm_x = self.ff_norm_x(x) * (1 + x_scale_mlp[:, None]) + x_shift_mlp[:, None]
|
592 |
+
x_ff_output = self.ff_x(norm_x)
|
593 |
+
x = x + x_gate_mlp.unsqueeze(1) * x_ff_output
|
594 |
+
|
595 |
+
return c, x
|
596 |
+
|
597 |
+
|
598 |
+
# time step conditioning embedding
|
599 |
+
|
600 |
+
|
601 |
+
class TimestepEmbedding(nn.Module):
|
602 |
+
def __init__(self, dim, freq_embed_dim=256):
|
603 |
+
super().__init__()
|
604 |
+
self.time_embed = SinusPositionEmbedding(freq_embed_dim)
|
605 |
+
self.time_mlp = nn.Sequential(nn.Linear(freq_embed_dim, dim), nn.SiLU(), nn.Linear(dim, dim))
|
606 |
+
|
607 |
+
def forward(self, timestep: float["b"]): # noqa: F821
|
608 |
+
time_hidden = self.time_embed(timestep)
|
609 |
+
time_hidden = time_hidden.to(timestep.dtype)
|
610 |
+
time = self.time_mlp(time_hidden) # b d
|
611 |
+
return time
|
diffrhythm/model/trainer.py
ADDED
@@ -0,0 +1,350 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import os
|
4 |
+
import gc
|
5 |
+
from tqdm import tqdm
|
6 |
+
import wandb
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from torch.optim import AdamW
|
10 |
+
from torch.optim.lr_scheduler import LinearLR, SequentialLR, ConstantLR
|
11 |
+
|
12 |
+
from accelerate import Accelerator
|
13 |
+
from accelerate.utils import DistributedDataParallelKwargs
|
14 |
+
from diffrhythm.dataset.custom_dataset_align2f5 import LanceDiffusionDataset
|
15 |
+
|
16 |
+
from torch.utils.data import DataLoader, DistributedSampler
|
17 |
+
|
18 |
+
from ema_pytorch import EMA
|
19 |
+
|
20 |
+
from diffrhythm.model import CFM
|
21 |
+
from diffrhythm.model.utils import exists, default
|
22 |
+
|
23 |
+
import time
|
24 |
+
|
25 |
+
# from apex.optimizers.fused_adam import FusedAdam
|
26 |
+
|
27 |
+
# trainer
|
28 |
+
|
29 |
+
|
30 |
+
class Trainer:
|
31 |
+
def __init__(
|
32 |
+
self,
|
33 |
+
model: CFM,
|
34 |
+
args,
|
35 |
+
epochs,
|
36 |
+
learning_rate,
|
37 |
+
#dataloader,
|
38 |
+
num_warmup_updates=20000,
|
39 |
+
save_per_updates=1000,
|
40 |
+
checkpoint_path=None,
|
41 |
+
batch_size=32,
|
42 |
+
batch_size_type: str = "sample",
|
43 |
+
max_samples=32,
|
44 |
+
grad_accumulation_steps=1,
|
45 |
+
max_grad_norm=1.0,
|
46 |
+
noise_scheduler: str | None = None,
|
47 |
+
duration_predictor: torch.nn.Module | None = None,
|
48 |
+
wandb_project="test_e2-tts",
|
49 |
+
wandb_run_name="test_run",
|
50 |
+
wandb_resume_id: str = None,
|
51 |
+
last_per_steps=None,
|
52 |
+
accelerate_kwargs: dict = dict(),
|
53 |
+
ema_kwargs: dict = dict(),
|
54 |
+
bnb_optimizer: bool = False,
|
55 |
+
reset_lr: bool = False,
|
56 |
+
use_style_prompt: bool = False,
|
57 |
+
grad_ckpt: bool = False
|
58 |
+
):
|
59 |
+
self.args = args
|
60 |
+
|
61 |
+
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=False, )
|
62 |
+
|
63 |
+
logger = "wandb" if wandb.api.api_key else None
|
64 |
+
#logger = None
|
65 |
+
print(f"Using logger: {logger}")
|
66 |
+
# print("-----------1-------------")
|
67 |
+
import tbe.common
|
68 |
+
# print("-----------2-------------")
|
69 |
+
self.accelerator = Accelerator(
|
70 |
+
log_with=logger,
|
71 |
+
kwargs_handlers=[ddp_kwargs],
|
72 |
+
gradient_accumulation_steps=grad_accumulation_steps,
|
73 |
+
**accelerate_kwargs,
|
74 |
+
)
|
75 |
+
# print("-----------3-------------")
|
76 |
+
|
77 |
+
if logger == "wandb":
|
78 |
+
if exists(wandb_resume_id):
|
79 |
+
init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name, "id": wandb_resume_id}}
|
80 |
+
else:
|
81 |
+
init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name}}
|
82 |
+
self.accelerator.init_trackers(
|
83 |
+
project_name=wandb_project,
|
84 |
+
init_kwargs=init_kwargs,
|
85 |
+
config={
|
86 |
+
"epochs": epochs,
|
87 |
+
"learning_rate": learning_rate,
|
88 |
+
"num_warmup_updates": num_warmup_updates,
|
89 |
+
"batch_size": batch_size,
|
90 |
+
"batch_size_type": batch_size_type,
|
91 |
+
"max_samples": max_samples,
|
92 |
+
"grad_accumulation_steps": grad_accumulation_steps,
|
93 |
+
"max_grad_norm": max_grad_norm,
|
94 |
+
"gpus": self.accelerator.num_processes,
|
95 |
+
"noise_scheduler": noise_scheduler,
|
96 |
+
},
|
97 |
+
)
|
98 |
+
|
99 |
+
self.precision = self.accelerator.state.mixed_precision
|
100 |
+
self.precision = self.precision.replace("no", "fp32")
|
101 |
+
print("!!!!!!!!!!!!!!!!!", self.precision)
|
102 |
+
|
103 |
+
self.model = model
|
104 |
+
#self.model = torch.compile(model)
|
105 |
+
|
106 |
+
#self.dataloader = dataloader
|
107 |
+
|
108 |
+
if self.is_main:
|
109 |
+
self.ema_model = EMA(model, include_online_model=False, **ema_kwargs)
|
110 |
+
|
111 |
+
self.ema_model.to(self.accelerator.device)
|
112 |
+
if self.accelerator.state.distributed_type in ["DEEPSPEED", "FSDP"]:
|
113 |
+
self.ema_model.half()
|
114 |
+
|
115 |
+
self.epochs = epochs
|
116 |
+
self.num_warmup_updates = num_warmup_updates
|
117 |
+
self.save_per_updates = save_per_updates
|
118 |
+
self.last_per_steps = default(last_per_steps, save_per_updates * grad_accumulation_steps)
|
119 |
+
self.checkpoint_path = default(checkpoint_path, "ckpts/test_e2-tts")
|
120 |
+
|
121 |
+
self.max_samples = max_samples
|
122 |
+
self.grad_accumulation_steps = grad_accumulation_steps
|
123 |
+
self.max_grad_norm = max_grad_norm
|
124 |
+
|
125 |
+
self.noise_scheduler = noise_scheduler
|
126 |
+
|
127 |
+
self.duration_predictor = duration_predictor
|
128 |
+
|
129 |
+
self.reset_lr = reset_lr
|
130 |
+
|
131 |
+
self.use_style_prompt = use_style_prompt
|
132 |
+
|
133 |
+
self.grad_ckpt = grad_ckpt
|
134 |
+
|
135 |
+
if bnb_optimizer:
|
136 |
+
import bitsandbytes as bnb
|
137 |
+
|
138 |
+
self.optimizer = bnb.optim.AdamW8bit(model.parameters(), lr=learning_rate)
|
139 |
+
else:
|
140 |
+
self.optimizer = AdamW(model.parameters(), lr=learning_rate)
|
141 |
+
#self.optimizer = FusedAdam(model.parameters(), lr=learning_rate)
|
142 |
+
|
143 |
+
#self.model = torch.compile(self.model)
|
144 |
+
if self.accelerator.state.distributed_type == "DEEPSPEED":
|
145 |
+
self.accelerator.state.deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu'] = batch_size
|
146 |
+
|
147 |
+
self.get_dataloader()
|
148 |
+
self.get_scheduler()
|
149 |
+
# self.get_constant_scheduler()
|
150 |
+
|
151 |
+
self.model, self.optimizer, self.scheduler, self.train_dataloader = self.accelerator.prepare(self.model, self.optimizer, self.scheduler, self.train_dataloader)
|
152 |
+
|
153 |
+
def get_scheduler(self):
|
154 |
+
warmup_steps = (
|
155 |
+
self.num_warmup_updates * self.accelerator.num_processes
|
156 |
+
) # consider a fixed warmup steps while using accelerate multi-gpu ddp
|
157 |
+
total_steps = len(self.train_dataloader) * self.epochs / self.grad_accumulation_steps
|
158 |
+
decay_steps = total_steps - warmup_steps
|
159 |
+
warmup_scheduler = LinearLR(self.optimizer, start_factor=1e-8, end_factor=1.0, total_iters=warmup_steps)
|
160 |
+
decay_scheduler = LinearLR(self.optimizer, start_factor=1.0, end_factor=1e-8, total_iters=decay_steps)
|
161 |
+
# constant_scheduler = ConstantLR(self.optimizer, factor=1, total_iters=decay_steps)
|
162 |
+
self.scheduler = SequentialLR(
|
163 |
+
self.optimizer, schedulers=[warmup_scheduler, decay_scheduler], milestones=[warmup_steps]
|
164 |
+
)
|
165 |
+
|
166 |
+
def get_constant_scheduler(self):
|
167 |
+
total_steps = len(self.train_dataloader) * self.epochs / self.grad_accumulation_steps
|
168 |
+
self.scheduler = ConstantLR(self.optimizer, factor=1, total_iters=total_steps)
|
169 |
+
|
170 |
+
def get_dataloader(self):
|
171 |
+
prompt_path = self.args.prompt_path.split('|')
|
172 |
+
lrc_path = self.args.lrc_path.split('|')
|
173 |
+
latent_path = self.args.latent_path.split('|')
|
174 |
+
ldd = LanceDiffusionDataset(*LanceDiffusionDataset.init_data(self.args.dataset_path), \
|
175 |
+
max_frames=self.args.max_frames, min_frames=self.args.min_frames, \
|
176 |
+
align_lyrics=self.args.align_lyrics, lyrics_slice=self.args.lyrics_slice, \
|
177 |
+
use_style_prompt=self.args.use_style_prompt, parse_lyrics=self.args.parse_lyrics,
|
178 |
+
lyrics_shift=self.args.lyrics_shift, downsample_rate=self.args.downsample_rate, \
|
179 |
+
skip_empty_lyrics=self.args.skip_empty_lyrics, tokenizer_type=self.args.tokenizer_type, precision=self.precision, \
|
180 |
+
start_time=time.time(), pure_prob=self.args.pure_prob)
|
181 |
+
|
182 |
+
# start_time = time.time()
|
183 |
+
self.train_dataloader = DataLoader(
|
184 |
+
dataset=ldd,
|
185 |
+
batch_size=self.args.batch_size, # 每个批次的样本数
|
186 |
+
shuffle=True, # 是否随机打乱数据
|
187 |
+
num_workers=4, # 用于加载数据的子进程数
|
188 |
+
pin_memory=True, # 加速GPU训练
|
189 |
+
collate_fn=ldd.custom_collate_fn,
|
190 |
+
persistent_workers=True
|
191 |
+
)
|
192 |
+
|
193 |
+
|
194 |
+
@property
|
195 |
+
def is_main(self):
|
196 |
+
return self.accelerator.is_main_process
|
197 |
+
|
198 |
+
def save_checkpoint(self, step, last=False):
|
199 |
+
self.accelerator.wait_for_everyone()
|
200 |
+
if self.is_main:
|
201 |
+
checkpoint = dict(
|
202 |
+
model_state_dict=self.accelerator.unwrap_model(self.model).state_dict(),
|
203 |
+
optimizer_state_dict=self.accelerator.unwrap_model(self.optimizer).state_dict(),
|
204 |
+
ema_model_state_dict=self.ema_model.state_dict(),
|
205 |
+
scheduler_state_dict=self.scheduler.state_dict(),
|
206 |
+
step=step,
|
207 |
+
)
|
208 |
+
if not os.path.exists(self.checkpoint_path):
|
209 |
+
os.makedirs(self.checkpoint_path)
|
210 |
+
if last:
|
211 |
+
self.accelerator.save(checkpoint, f"{self.checkpoint_path}/model_last.pt")
|
212 |
+
print(f"Saved last checkpoint at step {step}")
|
213 |
+
else:
|
214 |
+
self.accelerator.save(checkpoint, f"{self.checkpoint_path}/model_{step}.pt")
|
215 |
+
|
216 |
+
def load_checkpoint(self):
|
217 |
+
if (
|
218 |
+
not exists(self.checkpoint_path)
|
219 |
+
or not os.path.exists(self.checkpoint_path)
|
220 |
+
or not os.listdir(self.checkpoint_path)
|
221 |
+
):
|
222 |
+
return 0
|
223 |
+
|
224 |
+
self.accelerator.wait_for_everyone()
|
225 |
+
if "model_last.pt" in os.listdir(self.checkpoint_path):
|
226 |
+
latest_checkpoint = "model_last.pt"
|
227 |
+
else:
|
228 |
+
latest_checkpoint = sorted(
|
229 |
+
[f for f in os.listdir(self.checkpoint_path) if f.endswith(".pt")],
|
230 |
+
key=lambda x: int("".join(filter(str.isdigit, x))),
|
231 |
+
)[-1]
|
232 |
+
|
233 |
+
checkpoint = torch.load(f"{self.checkpoint_path}/{latest_checkpoint}", map_location="cpu")
|
234 |
+
|
235 |
+
### **1. 过滤 `ema_model` 的不匹配参数**
|
236 |
+
if self.is_main:
|
237 |
+
ema_dict = self.ema_model.state_dict()
|
238 |
+
ema_checkpoint_dict = checkpoint["ema_model_state_dict"]
|
239 |
+
|
240 |
+
filtered_ema_dict = {
|
241 |
+
k: v for k, v in ema_checkpoint_dict.items()
|
242 |
+
if k in ema_dict and ema_dict[k].shape == v.shape # 仅加载 shape 匹配的参数
|
243 |
+
}
|
244 |
+
|
245 |
+
print(f"Loading {len(filtered_ema_dict)} / {len(ema_checkpoint_dict)} ema_model params")
|
246 |
+
self.ema_model.load_state_dict(filtered_ema_dict, strict=False)
|
247 |
+
|
248 |
+
### **2. 过滤 `model` 的不匹配参数**
|
249 |
+
model_dict = self.accelerator.unwrap_model(self.model).state_dict()
|
250 |
+
checkpoint_model_dict = checkpoint["model_state_dict"]
|
251 |
+
|
252 |
+
filtered_model_dict = {
|
253 |
+
k: v for k, v in checkpoint_model_dict.items()
|
254 |
+
if k in model_dict and model_dict[k].shape == v.shape # 仅加载 shape 匹配的参数
|
255 |
+
}
|
256 |
+
|
257 |
+
print(f"Loading {len(filtered_model_dict)} / {len(checkpoint_model_dict)} model params")
|
258 |
+
self.accelerator.unwrap_model(self.model).load_state_dict(filtered_model_dict, strict=False)
|
259 |
+
|
260 |
+
### **3. 加载优化器、调度器和步数**
|
261 |
+
if "step" in checkpoint:
|
262 |
+
if self.scheduler and not self.reset_lr:
|
263 |
+
self.scheduler.load_state_dict(checkpoint["scheduler_state_dict"])
|
264 |
+
step = checkpoint["step"]
|
265 |
+
else:
|
266 |
+
step = 0
|
267 |
+
|
268 |
+
del checkpoint
|
269 |
+
gc.collect()
|
270 |
+
print("Checkpoint loaded at step", step)
|
271 |
+
return step
|
272 |
+
|
273 |
+
def train(self, resumable_with_seed: int = None):
|
274 |
+
train_dataloader = self.train_dataloader
|
275 |
+
|
276 |
+
start_step = self.load_checkpoint()
|
277 |
+
global_step = start_step
|
278 |
+
|
279 |
+
if resumable_with_seed > 0:
|
280 |
+
orig_epoch_step = len(train_dataloader)
|
281 |
+
skipped_epoch = int(start_step // orig_epoch_step)
|
282 |
+
skipped_batch = start_step % orig_epoch_step
|
283 |
+
skipped_dataloader = self.accelerator.skip_first_batches(train_dataloader, num_batches=skipped_batch)
|
284 |
+
else:
|
285 |
+
skipped_epoch = 0
|
286 |
+
|
287 |
+
for epoch in range(skipped_epoch, self.epochs):
|
288 |
+
self.model.train()
|
289 |
+
if resumable_with_seed > 0 and epoch == skipped_epoch:
|
290 |
+
progress_bar = tqdm(
|
291 |
+
skipped_dataloader,
|
292 |
+
desc=f"Epoch {epoch+1}/{self.epochs}",
|
293 |
+
unit="step",
|
294 |
+
disable=not self.accelerator.is_local_main_process,
|
295 |
+
initial=skipped_batch,
|
296 |
+
total=orig_epoch_step,
|
297 |
+
smoothing=0.15
|
298 |
+
)
|
299 |
+
else:
|
300 |
+
progress_bar = tqdm(
|
301 |
+
train_dataloader,
|
302 |
+
desc=f"Epoch {epoch+1}/{self.epochs}",
|
303 |
+
unit="step",
|
304 |
+
disable=not self.accelerator.is_local_main_process,
|
305 |
+
smoothing=0.15
|
306 |
+
)
|
307 |
+
|
308 |
+
for batch in progress_bar:
|
309 |
+
with self.accelerator.accumulate(self.model):
|
310 |
+
text_inputs = batch["lrc"]
|
311 |
+
mel_spec = batch["latent"].permute(0, 2, 1)
|
312 |
+
mel_lengths = batch["latent_lengths"]
|
313 |
+
style_prompt = batch["prompt"]
|
314 |
+
style_prompt_lens = batch["prompt_lengths"]
|
315 |
+
start_time = batch["start_time"]
|
316 |
+
|
317 |
+
loss, cond, pred = self.model(
|
318 |
+
mel_spec, text=text_inputs, lens=mel_lengths, noise_scheduler=self.noise_scheduler,
|
319 |
+
style_prompt=style_prompt if self.use_style_prompt else None,
|
320 |
+
style_prompt_lens=style_prompt_lens if self.use_style_prompt else None,
|
321 |
+
grad_ckpt=self.grad_ckpt, start_time=start_time
|
322 |
+
)
|
323 |
+
self.accelerator.backward(loss)
|
324 |
+
|
325 |
+
if self.max_grad_norm > 0 and self.accelerator.sync_gradients:
|
326 |
+
self.accelerator.clip_grad_norm_(self.model.parameters(), self.max_grad_norm)
|
327 |
+
|
328 |
+
self.optimizer.step()
|
329 |
+
self.scheduler.step()
|
330 |
+
self.optimizer.zero_grad()
|
331 |
+
|
332 |
+
if self.is_main:
|
333 |
+
self.ema_model.update()
|
334 |
+
|
335 |
+
global_step += 1
|
336 |
+
|
337 |
+
if self.accelerator.is_local_main_process:
|
338 |
+
self.accelerator.log({"loss": loss.item(), "lr": self.scheduler.get_last_lr()[0]}, step=global_step)
|
339 |
+
|
340 |
+
progress_bar.set_postfix(step=str(global_step), loss=loss.item())
|
341 |
+
|
342 |
+
if global_step % (self.save_per_updates * self.grad_accumulation_steps) == 0:
|
343 |
+
self.save_checkpoint(global_step)
|
344 |
+
|
345 |
+
if global_step % self.last_per_steps == 0:
|
346 |
+
self.save_checkpoint(global_step, last=True)
|
347 |
+
|
348 |
+
self.save_checkpoint(global_step, last=True)
|
349 |
+
|
350 |
+
self.accelerator.end_training()
|
diffrhythm/model/utils.py
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import os
|
4 |
+
import random
|
5 |
+
from collections import defaultdict
|
6 |
+
from importlib.resources import files
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from torch.nn.utils.rnn import pad_sequence
|
10 |
+
|
11 |
+
|
12 |
+
# seed everything
|
13 |
+
|
14 |
+
|
15 |
+
def seed_everything(seed=0):
|
16 |
+
random.seed(seed)
|
17 |
+
os.environ["PYTHONHASHSEED"] = str(seed)
|
18 |
+
torch.manual_seed(seed)
|
19 |
+
torch.cuda.manual_seed(seed)
|
20 |
+
torch.cuda.manual_seed_all(seed)
|
21 |
+
torch.backends.cudnn.deterministic = True
|
22 |
+
torch.backends.cudnn.benchmark = False
|
23 |
+
|
24 |
+
|
25 |
+
# helpers
|
26 |
+
|
27 |
+
|
28 |
+
def exists(v):
|
29 |
+
return v is not None
|
30 |
+
|
31 |
+
|
32 |
+
def default(v, d):
|
33 |
+
return v if exists(v) else d
|
34 |
+
|
35 |
+
|
36 |
+
# tensor helpers
|
37 |
+
|
38 |
+
|
39 |
+
def lens_to_mask(t: int["b"], length: int | None = None) -> bool["b n"]: # noqa: F722 F821
|
40 |
+
if not exists(length):
|
41 |
+
length = t.amax()
|
42 |
+
|
43 |
+
seq = torch.arange(length, device=t.device)
|
44 |
+
return seq[None, :] < t[:, None]
|
45 |
+
|
46 |
+
|
47 |
+
def mask_from_start_end_indices(seq_len: int["b"], start: int["b"], end: int["b"]): # noqa: F722 F821
|
48 |
+
max_seq_len = 2048
|
49 |
+
seq = torch.arange(max_seq_len, device=start.device).long()
|
50 |
+
start_mask = seq[None, :] >= start[:, None]
|
51 |
+
end_mask = seq[None, :] < end[:, None]
|
52 |
+
return start_mask & end_mask
|
53 |
+
|
54 |
+
|
55 |
+
def mask_from_frac_lengths(seq_len: int["b"], frac_lengths: float["b"]): # noqa: F722 F821
|
56 |
+
lengths = (frac_lengths * seq_len).long()
|
57 |
+
max_start = seq_len - lengths
|
58 |
+
|
59 |
+
rand = torch.rand_like(frac_lengths)
|
60 |
+
start = (max_start * rand).long().clamp(min=0)
|
61 |
+
end = start + lengths
|
62 |
+
|
63 |
+
return mask_from_start_end_indices(seq_len, start, end)
|
64 |
+
|
65 |
+
|
66 |
+
def maybe_masked_mean(t: float["b n d"], mask: bool["b n"] = None) -> float["b d"]: # noqa: F722
|
67 |
+
if not exists(mask):
|
68 |
+
return t.mean(dim=1)
|
69 |
+
|
70 |
+
t = torch.where(mask[:, :, None], t, torch.tensor(0.0, device=t.device))
|
71 |
+
num = t.sum(dim=1)
|
72 |
+
den = mask.float().sum(dim=1)
|
73 |
+
|
74 |
+
return num / den.clamp(min=1.0)
|
75 |
+
|
76 |
+
|
77 |
+
# simple utf-8 tokenizer, since paper went character based
|
78 |
+
def list_str_to_tensor(text: list[str], padding_value=-1) -> int["b nt"]: # noqa: F722
|
79 |
+
list_tensors = [torch.tensor([*bytes(t, "UTF-8")]) for t in text] # ByT5 style
|
80 |
+
text = pad_sequence(list_tensors, padding_value=padding_value, batch_first=True)
|
81 |
+
return text
|
82 |
+
|
83 |
+
|
84 |
+
# char tokenizer, based on custom dataset's extracted .txt file
|
85 |
+
def list_str_to_idx(
|
86 |
+
text: list[str] | list[list[str]],
|
87 |
+
vocab_char_map: dict[str, int], # {char: idx}
|
88 |
+
padding_value=-1,
|
89 |
+
) -> int["b nt"]: # noqa: F722
|
90 |
+
list_idx_tensors = [torch.tensor([vocab_char_map.get(c, 0) for c in t]) for t in text] # pinyin or char style
|
91 |
+
text = pad_sequence(list_idx_tensors, padding_value=padding_value, batch_first=True)
|
92 |
+
return text
|
93 |
+
|
94 |
+
|
95 |
+
# Get tokenizer
|
96 |
+
|
97 |
+
|
98 |
+
def get_tokenizer(dataset_name, tokenizer: str = "pinyin"):
|
99 |
+
"""
|
100 |
+
tokenizer - "pinyin" do g2p for only chinese characters, need .txt vocab_file
|
101 |
+
- "char" for char-wise tokenizer, need .txt vocab_file
|
102 |
+
- "byte" for utf-8 tokenizer
|
103 |
+
- "custom" if you're directly passing in a path to the vocab.txt you want to use
|
104 |
+
vocab_size - if use "pinyin", all available pinyin types, common alphabets (also those with accent) and symbols
|
105 |
+
- if use "char", derived from unfiltered character & symbol counts of custom dataset
|
106 |
+
- if use "byte", set to 256 (unicode byte range)
|
107 |
+
"""
|
108 |
+
if tokenizer in ["pinyin", "char"]:
|
109 |
+
tokenizer_path = os.path.join(files("diffrhythm").joinpath("../../data"), f"{dataset_name}_{tokenizer}/vocab.txt")
|
110 |
+
with open(tokenizer_path, "r", encoding="utf-8") as f:
|
111 |
+
vocab_char_map = {}
|
112 |
+
for i, char in enumerate(f):
|
113 |
+
vocab_char_map[char[:-1]] = i
|
114 |
+
vocab_size = len(vocab_char_map)
|
115 |
+
assert vocab_char_map[" "] == 0, "make sure space is of idx 0 in vocab.txt, cuz 0 is used for unknown char"
|
116 |
+
|
117 |
+
elif tokenizer == "byte":
|
118 |
+
vocab_char_map = None
|
119 |
+
vocab_size = 256
|
120 |
+
|
121 |
+
elif tokenizer == "custom":
|
122 |
+
with open(dataset_name, "r", encoding="utf-8") as f:
|
123 |
+
vocab_char_map = {}
|
124 |
+
for i, char in enumerate(f):
|
125 |
+
vocab_char_map[char[:-1]] = i
|
126 |
+
vocab_size = len(vocab_char_map)
|
127 |
+
|
128 |
+
return vocab_char_map, vocab_size
|
129 |
+
|
130 |
+
|
131 |
+
# convert char to pinyin
|
132 |
+
|
133 |
+
|
134 |
+
def convert_char_to_pinyin(text_list, polyphone=True):
|
135 |
+
final_text_list = []
|
136 |
+
god_knows_why_en_testset_contains_zh_quote = str.maketrans(
|
137 |
+
{"“": '"', "”": '"', "‘": "'", "’": "'"}
|
138 |
+
) # in case librispeech (orig no-pc) test-clean
|
139 |
+
custom_trans = str.maketrans({";": ","}) # add custom trans here, to address oov
|
140 |
+
for text in text_list:
|
141 |
+
char_list = []
|
142 |
+
text = text.translate(god_knows_why_en_testset_contains_zh_quote)
|
143 |
+
text = text.translate(custom_trans)
|
144 |
+
for seg in jieba.cut(text):
|
145 |
+
seg_byte_len = len(bytes(seg, "UTF-8"))
|
146 |
+
if seg_byte_len == len(seg): # if pure alphabets and symbols
|
147 |
+
if char_list and seg_byte_len > 1 and char_list[-1] not in " :'\"":
|
148 |
+
char_list.append(" ")
|
149 |
+
char_list.extend(seg)
|
150 |
+
elif polyphone and seg_byte_len == 3 * len(seg): # if pure chinese characters
|
151 |
+
seg = lazy_pinyin(seg, style=Style.TONE3, tone_sandhi=True)
|
152 |
+
for c in seg:
|
153 |
+
if c not in "。,、;:?!《》【】—…":
|
154 |
+
char_list.append(" ")
|
155 |
+
char_list.append(c)
|
156 |
+
else: # if mixed chinese characters, alphabets and symbols
|
157 |
+
for c in seg:
|
158 |
+
if ord(c) < 256:
|
159 |
+
char_list.extend(c)
|
160 |
+
else:
|
161 |
+
if c not in "。,、;:?!《》【】—…":
|
162 |
+
char_list.append(" ")
|
163 |
+
char_list.extend(lazy_pinyin(c, style=Style.TONE3, tone_sandhi=True))
|
164 |
+
else: # if is zh punc
|
165 |
+
char_list.append(c)
|
166 |
+
final_text_list.append(char_list)
|
167 |
+
|
168 |
+
return final_text_list
|
169 |
+
|
170 |
+
|
171 |
+
# filter func for dirty data with many repetitions
|
172 |
+
|
173 |
+
|
174 |
+
def repetition_found(text, length=2, tolerance=10):
|
175 |
+
pattern_count = defaultdict(int)
|
176 |
+
for i in range(len(text) - length + 1):
|
177 |
+
pattern = text[i : i + length]
|
178 |
+
pattern_count[pattern] += 1
|
179 |
+
for pattern, count in pattern_count.items():
|
180 |
+
if count > tolerance:
|
181 |
+
return True
|
182 |
+
return False
|
prompt/gift_of_the_world.wav
ADDED
Binary file (960 kB). View file
|
|
prompt/little_happiness.wav
ADDED
Binary file (960 kB). View file
|
|
prompt/little_talks.wav
ADDED
Binary file (960 kB). View file
|
|
prompt/ltwyl.wav
ADDED
Binary file (882 kB). View file
|
|
prompt/most_beautiful_expectation.wav
ADDED
Binary file (960 kB). View file
|
|