Spaces:
Running
on
Zero
Running
on
Zero
""" | |
ein notation: | |
b - batch | |
n - sequence | |
nt - text sequence | |
nw - raw wave length | |
d - dimension | |
""" | |
from __future__ import annotations | |
import torch | |
from torch import nn | |
import torch | |
import torch.nn.functional as F | |
from x_transformers.x_transformers import RotaryEmbedding | |
from transformers.models.llama.modeling_llama import LlamaDecoderLayer, LlamaRotaryEmbedding | |
from transformers.models.llama import LlamaConfig | |
from torch.utils.checkpoint import checkpoint | |
from diffrhythm.model.modules import ( | |
TimestepEmbedding, | |
ConvNeXtV2Block, | |
ConvPositionEmbedding, | |
DiTBlock, | |
AdaLayerNormZero_Final, | |
precompute_freqs_cis, | |
get_pos_embed_indices, | |
) | |
# from liger_kernel.transformers import apply_liger_kernel_to_llama | |
# apply_liger_kernel_to_llama() | |
# Text embedding | |
class TextEmbedding(nn.Module): | |
def __init__(self, text_num_embeds, text_dim, conv_layers=0, conv_mult=2): | |
super().__init__() | |
self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim) # use 0 as filler token | |
if conv_layers > 0: | |
self.extra_modeling = True | |
self.precompute_max_pos = 4096 # ~44s of 24khz audio | |
self.register_buffer("freqs_cis", precompute_freqs_cis(text_dim, self.precompute_max_pos), persistent=False) | |
self.text_blocks = nn.Sequential( | |
*[ConvNeXtV2Block(text_dim, text_dim * conv_mult) for _ in range(conv_layers)] | |
) | |
else: | |
self.extra_modeling = False | |
def forward(self, text: int["b nt"], seq_len, drop_text=False): # noqa: F722 | |
#text = text + 1 # use 0 as filler token. preprocess of batch pad -1, see list_str_to_idx() | |
#text = text[:, :seq_len] # curtail if character tokens are more than the mel spec tokens | |
batch, text_len = text.shape[0], text.shape[1] | |
#text = F.pad(text, (0, seq_len - text_len), value=0) | |
if drop_text: # cfg for text | |
text = torch.zeros_like(text) | |
text = self.text_embed(text) # b n -> b n d | |
# possible extra modeling | |
if self.extra_modeling: | |
# sinus pos emb | |
batch_start = torch.zeros((batch,), dtype=torch.long) | |
pos_idx = get_pos_embed_indices(batch_start, seq_len, max_pos=self.precompute_max_pos) | |
text_pos_embed = self.freqs_cis[pos_idx] | |
text = text + text_pos_embed | |
# convnextv2 blocks | |
text = self.text_blocks(text) | |
return text | |
# noised input audio and context mixing embedding | |
class InputEmbedding(nn.Module): | |
def __init__(self, mel_dim, text_dim, out_dim, cond_dim): | |
super().__init__() | |
self.proj = nn.Linear(mel_dim * 2 + text_dim + cond_dim * 2, out_dim) | |
self.conv_pos_embed = ConvPositionEmbedding(dim=out_dim) | |
def forward(self, x: float["b n d"], cond: float["b n d"], text_embed: float["b n d"], style_emb, time_emb, drop_audio_cond=False): # noqa: F722 | |
if drop_audio_cond: # cfg for cond audio | |
cond = torch.zeros_like(cond) | |
style_emb = style_emb.unsqueeze(1).repeat(1, x.shape[1], 1) | |
time_emb = time_emb.unsqueeze(1).repeat(1, x.shape[1], 1) | |
# print(x.shape, cond.shape, text_embed.shape, style_emb.shape, time_emb.shape) | |
x = self.proj(torch.cat((x, cond, text_embed, style_emb, time_emb), dim=-1)) | |
x = self.conv_pos_embed(x) + x | |
return x | |
# Transformer backbone using DiT blocks | |
class DiT(nn.Module): | |
def __init__( | |
self, | |
*, | |
dim, | |
depth=8, | |
heads=8, | |
dim_head=64, | |
dropout=0.1, | |
ff_mult=4, | |
mel_dim=100, | |
text_num_embeds=256, | |
text_dim=None, | |
conv_layers=0, | |
long_skip_connection=False, | |
use_style_prompt=False | |
): | |
super().__init__() | |
cond_dim = 512 | |
self.time_embed = TimestepEmbedding(cond_dim) | |
self.start_time_embed = TimestepEmbedding(cond_dim) | |
if text_dim is None: | |
text_dim = mel_dim | |
self.text_embed = TextEmbedding(text_num_embeds, text_dim, conv_layers=conv_layers) | |
self.input_embed = InputEmbedding(mel_dim, text_dim, dim, cond_dim=cond_dim) | |
#self.rotary_embed = RotaryEmbedding(dim_head) | |
self.dim = dim | |
self.depth = depth | |
#self.transformer_blocks = nn.ModuleList( | |
# [DiTBlock(dim=dim, heads=heads, dim_head=dim_head, ff_mult=ff_mult, dropout=dropout, use_style_prompt=use_style_prompt) for _ in range(depth)] | |
#) | |
llama_config = LlamaConfig(hidden_size=dim, intermediate_size=dim * ff_mult, hidden_act='silu') | |
llama_config._attn_implementation = 'sdpa' | |
#llama_config._attn_implementation = '' | |
self.transformer_blocks = nn.ModuleList( | |
[LlamaDecoderLayer(llama_config, layer_idx=i) for i in range(depth)] | |
) | |
self.rotary_emb = LlamaRotaryEmbedding(config=llama_config) | |
self.long_skip_connection = nn.Linear(dim * 2, dim, bias=False) if long_skip_connection else None | |
self.text_fusion_linears = nn.ModuleList( | |
[ | |
nn.Sequential( | |
nn.Linear(cond_dim, dim), | |
nn.SiLU() | |
) for i in range(depth // 2) | |
] | |
) | |
for layer in self.text_fusion_linears: | |
for p in layer.parameters(): | |
p.detach().zero_() | |
self.norm_out = AdaLayerNormZero_Final(dim, cond_dim) # final modulation | |
self.proj_out = nn.Linear(dim, mel_dim) | |
# if use_style_prompt: | |
# self.prompt_rnn = nn.LSTM(64, cond_dim, 1, batch_first=True) | |
def forward_timestep_invariant(self, text, seq_len, drop_text, start_time): | |
s_t = self.start_time_embed(start_time) | |
text_embed = self.text_embed(text, seq_len, drop_text=drop_text) | |
text_residuals = [] | |
for layer in self.text_fusion_linears: | |
text_residual = layer(text_embed) | |
text_residuals.append(text_residual) | |
return s_t, text_embed, text_residuals | |
def forward( | |
self, | |
x: float["b n d"], # nosied input audio # noqa: F722 | |
text_embed: int["b nt"], # text # noqa: F722 | |
text_residuals, | |
cond: float["b n d"], # masked cond audio # noqa: F722 | |
time: float["b"] | float[""], # time step # noqa: F821 F722 | |
drop_audio_cond, # cfg for cond audio | |
drop_prompt=False, | |
style_prompt=None, # [b d t] | |
start_time=None, | |
): | |
batch, seq_len = x.shape[0], x.shape[1] | |
if time.ndim == 0: | |
time = time.repeat(batch) | |
t = self.time_embed(time) | |
c = t + start_time | |
if drop_prompt: | |
style_prompt = torch.zeros_like(style_prompt) | |
style_embed = style_prompt # [b, 512] | |
x = self.input_embed(x, cond, text_embed, style_embed, c, drop_audio_cond=drop_audio_cond) | |
if self.long_skip_connection is not None: | |
residual = x | |
pos_ids = torch.arange(x.shape[1], device=x.device) | |
pos_ids = pos_ids.unsqueeze(0).repeat(x.shape[0], 1) | |
rotary_embed = self.rotary_emb(x, pos_ids) | |
for i, block in enumerate(self.transformer_blocks): | |
x, *_ = block(x, position_embeddings=rotary_embed) | |
if i < self.depth // 2: | |
x = x + text_residuals[i] | |
if self.long_skip_connection is not None: | |
x = self.long_skip_connection(torch.cat((x, residual), dim=-1)) | |
x = self.norm_out(x, c) | |
output = self.proj_out(x) | |
return output | |